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ABSTRACT: We explore the possibility of creating non-semisimple matrix loop algebras which lead to tri-integrable
couplings containing two known integrable couplings. A semi-direct sum of Lie algebras consisting of specific 4 × 4
block matrices is found to form the base of such integrable couplings. An application to the KdV equations is made
as an illustrative example, and the resulting tri-integrable couplings are proved to possess bi-Hamiltonian structures,
which implies that there are infinitely many common commuting symmetries and conserved functionals determined by a
hereditary recursion operator.
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1 Introduction
Integrable couplings are a pretty new area of research in the field of integrable systems. The concept of integrable
couplings was introduced, based on studies of τ -symmetries, and an integrable theory for the perturbation equations was
developed by the perturbation bundle [1, 2, 3]. A general structure of integrable couplings connected with semi-direct
sums of Lie algebras was recognized recently [4, 5]. The Levi-Mal’tsev theorem states that an arbitrary Lie algebra over
a field of characteristic zero has a semi-direct sum structure of a solvable Lie algebra and a semisimple Lie algebra [6].
Therefore, semi-direct sums of Lie algebras, i.e., non-semisimple Lie algebras, lay the foundation for studying integrable
couplings, which produce triangular integrable systems with multi-components (see, e.g., [4, 5, 7] for details).

Assume that an integrable system

ut = K(u) = K(x, t, u, ux, uxx, · · · ), (1.1)

where u denotes a column vector of dependent variables, has two integrable couplings:

ū1,t = K̄1(ū1) =

[
K(u)

S1(u, u1)

]
, ū1 =

[
u

u1

]
, (1.2)

and

ū2,t = K̄2(ū2) =

[
K(u)

S2(u, u1)

]
, ū2 =

[
u

u2

]
, (1.3)

where u1 and u2 are two column vectors of additional dependent variables. A natural question is whether we can put
them together to form a new larger integrable coupling which possesses a bi-Hamiltonian structure. The simplest such
coupling system is

ūt = K̄(ū) =


K(u)

S(u, u1)

T (u, u2)

 , ū =


u

u1

u2

 . (1.4)

This is a kind of degenerate system in the sense that the two subsystems for the dependent variables u1 and u2 are
separated. Moreover, no Hamiltonian structure has been found for this system [8].

On the other hand, let us recall the definition of tri-integrable couplings. A tri-integrable coupling of a given integrable
system (1.1) is the following enlarged triangular integrable system [9]:

ut = K(u),
u1,t = S1(u, u1),
u2,t = S2(u, u1, u2)
u3,t = S3(u, u1, u2, u3).

(1.5)

We call this system to be a nonlinear integrable coupling if at least one of S1(u, u1), S2(u, u1, u2) and S3(u, u1, u2, u3)
are nonlinear with respect to any sub-vectors u1, u2, u3 of new dependent variables.
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Though we are not able to show that the system (1.4) is Hamiltonian, we will, from a specific non-semisimple matrix
Lie algebra, postulate an even larger Lax pair and present a kind of bi-Hamiltonian tri-integrable couplings, which con-
tains the system (1.4) as a sub-system. The zero curvature equation and the variational identity will be the basic tools we
will adopt [13].

The manuscript is structured as follows. In the next section, we will propose a non-semisimple matrix Lie algebra
consisting of 4× 4 block matrices, and construct a kind of tri-integrable couplings by using Lax pairs from this specific
Lie algebra. An application to the KdV soliton hierarchy will be made as an illustrative example, and all resulting
tri-integrable couplings will be shown to be bi-Hamiltonian by the variational identity.

2 Matrix Lie algebras generating tri-integrable couplings
2.1 Soliton hierarchy
Assume that a soliton hierarchy is associated with a spectral problem

φx = Uφ, U = U(u, λ) ∈ g, (2.1)

where g is often a semisimple matrix Lie algebra.
The zero curvature equations

Utm − V
[m]
x + [U, V [m]] = 0, m ≥ 0, (2.2)

with the Lax matrices V [m] = V [m](u, λ) ∈ g,m ≥ 0, are the compatibility conditions between the spectral problem
(2.1) and the auxiliary eigenvalue problems

φx = V [m]φ, m ≥ 0. (2.3)

In order to determine suitable Lax matrices V [m], m ≥ 0, we first solve the stationary zero curvature equation

Wx = [U,W ] (2.4)

by assuming
W = W (u, λ) =

∑
i≥0

W0,iλ
−i, (2.5)

where W0,i ∈ g, i ≥ 0. Then we define the Lax matrices V [m] by

V [m] = V [m](u, λ) = (λmW )+ + ∆m ∈ g, m ≥ 0, (2.6)

where P+ denotes the polynomial part of P in λ, and the modification terms ∆m are chosen to guarantee that zero
curvature equations (2.2) yield a soliton hierarchy with a Hamiltonian structure:

utm = Km(u) = J
δHm
δu

, m ≥ 0, (2.7)

of which the first system ut1 = K1 is usually the original integrable system (1.1) with

V = V [1] = V [1](u, λ). (2.8)

The above Hamiltonian functionals Hm are usually generated via the trace identity [10, 11] or more generally via the
variational identity [12, 13]:

δ

δu

∫
〈∂U
∂λ

,W 〉dx = λ−γ
∂

∂λ
λγ〈∂U

∂u
,W 〉, (2.9)

where γ is a constant, 〈·, ·〉 is a bilinear form on the Lie algebra g, which is non-degenerate, symmetric and ad-invariant
[13], and W is a solution of the stationary zero curvature equation (2.4).

2.2 Matrix Lie algebras
A desired tri-integrable coupling, which contains (1.2) and (1.3) as subsystems, is of the form

ut = K(u),

u1,t = S1(u, u1),

u2,t = S2(u, u2),

u3,t = S3(u, u1, u2, u3).

(2.10)

It was shown [8] that the coupled system (1.4) of two integrable couplings (1.2) and (1.3) has an enlarged zero curvature
representation

Ūt − V̄x + [Ū , V̄ ] = 0,

where the Lax pair of Ū and V̄ is defined by

Ū =


U U1 U2

0 U 0

0 0 U

 , V̄ =


V V1 V2

0 V 0

0 0 V

 .
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Motivated by this statement, we expect that an ideal Lax pair of Ū and V̄ for constructing a tri-integrable coupling (2.10)
can be triangular block matrices of the following type:

Mg(A1, A2, A3, A4) =


A1 A2 A3 A4

0 A1 0
∑4
i=1 α1,iAi

0 0 A1

∑4
i=1 α2,iAi

0 0 0 A1

 , (2.11)

where A1, A2, A3 and A4 are square submatrices of the same order, and {α1,i, α2,i}1≤i≤4 are real constants to be
determined. The submatrices should be chosen as Jordan blocks, because Jordan blocks build the canonical formulation of
matrices under similarity transformations. Within the canonical formulation, the blocks can represent integrable couplings
which can not be separated.

All block matrices of the form (2.11) need to constitute a Lie subalgebra of the 4×4 block matrix Lie algebra under the
matrix commutator. By direct computation, we see that block matrices forming a Lie subalgebra must be of the following
specific type:

Ms(A1, A2, A3, A4) =


A1 A2 A3 A4

0 A1 0 αA2 + β A3

0 0 A1 ζ A2 + µA3

0 0 0 A1

 , (2.12)

where α, β, ζ and µ are four arbitrary constants. For the sake of computational simplicity, we set ζ = β and use the
following subclass of block matrices:

M(A1, A2, A3, A4) =


A1 A2 A3 A4

0 A1 0 αA2 + β A3

0 0 A1 β A2 + µA3

0 0 0 A1

 , (2.13)

as a concrete example.
It is obvious to find that all block matrices defined by (2.13) constitute a matrix Lie algebra for fixed constants, α, β

and µ, under the matrix commutator
[M1,M2] = M1M2 −M2M1,

since we have the closure property

[M(A1, A2, A3, A4),M(B1, B2, B3, B4)] = M(C1, C2, C3, C4), (2.14)

where 

C1 = [A1, B1],

C2 = [A1, B2] + [A2, B1],

C3 = [A1, B3] + [A3, B1],

C4 = [A1, B4] + α [A2, B2] + β [A2, B3] + β [A3, B3] + µ [A3, B4] + [A4, B1].

(2.15)

The resulting Lie algebra has a semi-direct sum decomposition of a semisimple subalgebra g and a solvable subalgebra
gc:

ḡ = g A gc, (2.16)

where
g = {M(A1, 0, 0, 0)|A1 - arbitrary}, gc = {M(0, A2, A3, A4)|Ai - arbitrary}, (2.17)

and thus, it must be non-semisimple, because obviously one of nontrivial ideals of ḡ is gc. Such a Lie algebra ḡ creates
a basis for us to generate Hamiltonian tri-integrable couplings like the other presented Lie algebras in the literature (see,
e.g., [14, 15, 16]). The block A1 corresponds to the original integrable system, and the other three blocks A2, A3 and
A4 are used to generate the supplementary vector fields S1, S2 and S3. We remark that the commutators [A2, B2] and
[A3, B3] will lead to nonlinear terms in the resulting tri-integrable couplings.

2.3 Tri-integrable couplings
Let M(A1, A2, A3, A4) be defined by (2.13). We take the corresponding enlarged spectral matrix as

Ū = Ū(ū, λ) = M(U,U1, U2, U3) ∈ ḡ, (2.18)
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and the corresponding enlarged Lax matrix as

V̄ = V̄ (ū, λ) = M(V, V1, V2, V3) ∈ ḡ, (2.19)

where ū = (uT , uT1 , u
T
2 , u

T
3 )T , λ is the spectral parameter and

Ui = Ui(ui, λ), Vi = Vi(u, u1, · · · , ui, λ), 1 ≤ i ≤ 3. (2.20)

Theorem 2.1. Let U and V be a Lax pair of a given integrable system (1.1). If two integrable couplings (1.2) and (1.3)
of (1.1) have the zero curvature equations

Ui,t − Vi,x + [U, Vi] + [Ui, V ] = 0, i = 1, 2,

then the enlarged zero curvature equation, associated with the new enlarged Lax pair of Ū and V̄ defined in (2.18) and
(2.19),

Ūt − V̄x + [Ū , V̄ ] = 0, (2.21)

is equivalent to the following triangle system

Ut − Vx + [U, V ] = 0,

U1,t − V1,x + [U, V1] + [U1, V ] = 0,

U2,t − V2,x + [U, V2] + [U2, V ] = 0,

U3,t − V3,x + [U, V3] + α [U1, V1]

+β ([U1, V2] + [U2, V2]) + µ [U2, V3] + [U3, V ] = 0.

(2.22)

The first equation in (2.22) precisely engenders the given integrable system (1.1), and thus, the whole system (2.22) is
a coupling system of (1.1). This is the basic idea of enlarging given integrable systems by using the presented matrix Lie
algebra ḡ.

Following the traditional scheme for constructing soliton hierarchies [10, 17], we solve the corresponding enlarged
stationary zero curvature equation

W̄x = [Ū , W̄ ], (2.23)

by taking
W̄ = W̄ (ū, λ) = M(W,W1,W2,W3) ∈ ḡ, (2.24)

where W is defined by (2.5), and

Wi = Wi(u, u1, · · · , ui, λ) =
∑
j≥0

Wi,jλ
−j , 1 ≤ i ≤ 3. (2.25)

Then we define the enlarged Lax matrices V̄ [m] as

V̄ [m] = M(V [m], V
[m]
1 , V

[m]
2 , V

[m]
3 ) ∈ ḡ, m ≥ 0, (2.26)

with the submatrices V [m] being defined by (2.6) and

V
[m]
i = (λmWi)+ + ∆m,i, 1 ≤ i ≤ 3, m ≥ 0, (2.27)

where P+ denotes the polynomial part of P in λ again. An important step to construct a hierarchy of triangular integrable
couplings is to choose the modification terms ∆m,i such that the enlarged zero curvature equations

Ūtm − V̄
[m]
x + [Ū , V̄ [m]] = 0, m ≥ 0,

yield a hierarchy of enlarged soliton equations

ūtm = K̄m(ū), m ≥ 0. (2.28)

This hierarchy provides tri-integrable couplings for the given hierarchy (2.7):

ūtm =


utm

u1,tm

u2,tm

u3,tm

 = K̄m(ū) =


Km(u)

S1,m(u, u1)

S2,m(u, u2)

S3,m(u, u1, u2, u3)

 , m ≥ 0. (2.29)

Hamiltonian structures of those tri-integrable couplings can be constructed through using the associated variational iden-
tities [12, 13], which contain the trace identities as particular examples [10, 11].
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3 Application to the KdV hierarchy
3.1 The KdV equations
Let us recall the KdV soliton hierarchy [13, 18]. The typical spectral problem for the KdV hierarchy is given by

φx = Uφ, U = U(u, λ) =

[
0 1

λ− u 0

]
, φ =

[
φ1

φ2

]
. (3.1)

The stationary zero curvature equation
Wx = [U,W ] (3.2)

gives rise to 
ax = (−λ+ u)b+ c,

bx = −2 a,

cx = −2 (−λ+ u)a.

(3.3)

If we assume that W is of the form

W =

[
a b

c −a

]
=
∑
i≥0

W0,iλ
−i =

∑
i≥0

[
ai bi

ci −ai

]
λ−i, (3.4)

the systems (3.3) equivalently yields
bi+1 = 1

4
bi,xx + ubi − 1

2
∂−1uxbi,

ci = − 1
2
bi,xx + bi+1 − ubi,

ai = − 1
2
bi,x,

i ≥ 0. (3.5)

Setting the initial values
b0 = 0, b1 = 1, (3.6)

and selecting the constants of integration as zero, the recursion relation (3.5) uniquely determines W in (3.4). Further, a
direct computation tells

b2 =
1

2
u, b3 =

1

8
uxx +

3

8
u2, b4 =

1

32
uxxxx +

5

32
u2
x +

5

16
uuxx +

5

16
u3.

Now, the zero curvature equations
Utm − V

[m]
x + [U, V [m]] = 0, (3.7)

with

V [m] = (λm+1W )+ + ∆m,0, ∆m,0 =

[
0 0

−bm+2 0

]
, m ≥ 0, (3.8)

generate the KdV hierarchy of soliton equations:

utm = Km = 2 bm+2,x, m ≥ 0, (3.9)

which satisfies

Km = ΦKm−1, Φ =
1

4
∂2 + u+

1

2
ux∂

−1, m ≥ 1. (3.10)

Furthermore, the KdV hierarchy has a bi-Hamiltonian structure

utm = J
δHm
δu

= M
δHm−1

δu
, m ≥ 1, (3.11)

with the Hamiltonian pair defined by

J = ∂, M = ΦJ =
1

4
∂3 + u∂ +

1

2
ux, (3.12)

where ∂ = ∂
∂x

, and Hamiltonian functionals, by

Hm =

∫
4bm+3

2m+ 3
dx, m ≥ 0. (3.13)

The operator Φ defined in (3.10) is a hereditary recursion operator for the KdV hierarchy (3.9).
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3.2 Tri-integrable couplings of the KdV equations
We use the specific non-semisimple Lie algebra

ḡ = g A gc (3.14)

with
g = {M(A1, 0, 0, 0)| A1 ∈ sl(2,R), entries ofA1 - Laurent series inλ} , (3.15)

and
gc = {M(0, A2, A3, A4)| Ai ∈ sl(2,R), entries of Ai - Laurent series in λ, 2 ≤ i ≤ 4} , (3.16)

where M(A1, A2, A3) is defined by (2.13).
To construct tri-integrable couplings for the KdV equations, we introduce the corresponding enlarged spectral matrix

Ū = Ū(ū, λ) = M(U,U1, U2, U3) ∈ ḡ, (3.17)

with U = U(u, λ) be defined by (3.1) and

Ui = Ui(ui) =

[
0 0

−ui 0

]
, 1 ≤ i ≤ 3, (3.18)

where ū = (u, u1, u2, u3)T , and u1, u2 and u3 are new dependent variables.
To solve the corresponding enlarged stationary zero curvature equation

W̄x = [Ū , W̄ ], (3.19)

we search for a solution of the following form

W̄ = W̄ (ū, λ) = M(W,W1,W2,W3) ∈ ḡ, (3.20)

where W is given by (3.4). Assume that

W1,W2,W3 ∈ s̃l(2,R) = {A ∈ sl(2,R)| entries of A - Laurent series in λ−1}

are of the form

W1 =

[
e f

g −e

]
, W2 =

[
e′ f ′

g′ −e′

]
, W3 =

[
e′′ f ′′

g′′ −e′′

]
. (3.21)

Plugging (3.21) in the enlarged stationary zero curvature equation (3.19), we get
ex = u1 b+ (u− λ) f + g,

fx = −2 e,

gx = −2u1 a+ 2 (λ− u) e;

(3.22)


e ′x = u2 b+ (u− λ) f ′ + g ′,

f ′x = −2 e ′,

g ′x = −2u2a+ 2 (λ− u) e ′;

(3.23)

and 
e ′′x = u3b+ (αu1 + β u2)f + (β u1 + µu2)f ′ + (u− λ)f ′′ + g ′′,

f ′′x = −2 e ′′,

g ′′x = −2u3a− 2 (αu1 + β u2)e− 2 (β u1 + µu2)e ′ + 2 (λ− u)e ′′.

(3.24)

Trying a solution W̄ with 

e =
∑
i≥0

eiλ
−i, f =

∑
i≥0

fiλ
−i, g =

∑
i≥0

giλ
−i,

e′ =
∑
i≥0

e′iλ
−i, f ′ =

∑
i≥0

f ′iλ
−i, g′ =

∑
i≥0

g′iλ
−i,

e′′ =
∑
i≥0

e′′i λ
−i, f ′′ =

∑
i≥0

f ′′i λ
−i, g′′ =

∑
i≥0

g′′i λ
−i,

(3.25)

we have 
fi+1 = u1 bi − 1

2
∂−1u1,xbi + 1

4
fi,xx + u fi − 1

2
∂−1uxfi,

ei = − 1
2
fi,x,

gi = − 1
2
fi,xx − u1 bi + fi+1 − u fi;

(3.26)
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f ′i+1 = u2 bi − 1

2
∂−1u2,x bi + 1

4
f ′i,xx + u f ′i − 1

2
∂−1ux f

′
i ,

e ′i = − 1
2
f ′i,x,

g ′i = − 1
2
f ′i,xx − u2 bi + f ′i+1 − u f ′i ;

(3.27)

and 
f ′′i+1 = u3 bi − 1

2
∂−1u3,x bi + (αu1 + β u2) fi − 1

2
∂−1(αu1,x + β u2,x) fi

+(β u1 + µu2) f ′i − 1
2
∂−1(β u1,x + µu2,x) f ′i + 1

4
f ′′i,xx + u f ′′i − 1

2
∂−1ux f

′′
i ,

e ′′i = − 1
2
f ′′i,x,

g ′′i = − 1
2
f ′′i,xx − u3 bi − (αu1 + β u2) fi − (β u1 + µu2) f ′i + f ′′i+1 − u f ′′i .

(3.28)

Further taking
f0 = f ′0 = f ′′0 = 0, f1 = f ′1 = f ′′1 = 1, (3.29)

and selecting the constants of integration as zero, the recursion relations (3.26), (3.27) and (3.28) uniquely generate three
sequences of {ei, fi, gi}i≥1, {e′i, f ′i , g′i}i≥1 and {e′′i , f ′′i , g′′i }i≥1, respectively. We list the first three sets of selected
functions as follows:

f2 = 1
2
u1, f

′
2 = 1

2
u2, f

′′
2 = 1

2
u3;

f3 = 1
8
u1,xx + 3

4
uu1,

f ′3 = 1
8
u2,xx + 3

4
uu2,

f ′′3 = 1
8
u3,xx + 3

4
uu3 + 3

4
β u1u2 + 3

8
αu2

1 + 3
8
µu2

2;

f4 = 5
16
uxxu1 + 15

16
u2u1 + 5

16
u1,xux + 5

16
u1,xxu+ 1

32
u1,xxxx,

f ′4 = 5
16
uxxu2 + 15

16
u2u2 + 5

16
u2,xux + 5

16
u2,xxu+ 1

32
u2,xxxx,

f ′′4 = 15
16
u2u3 + 1

32
u3,xxxx + 15

16
(αu2

1 + µu2
2 + 2β u1u2 + 1

3
u3,xx)u

+ 5
16

(αu1,xx + β u2,xx)u1 + 5
16

(β u1,xx + µu2,xx)u2

+ 5
16

(β u1,xu2,x + u3uxx + u3,xux) + 5
32

(αu2
1,x + µu2

2,x).

Let us now introduce the enlarged Lax matrices

V̄ [m] = M(V [m], V
[m]
1 , V

[m]
2 , V

[m]
3 ) ∈ ḡ, m ≥ 0, (3.30)

where V [m] is defined as in (3.8) and

V
[m]
i = (λm+1Vi)+ + ∆m,i, 1 ≤ i ≤ 3, m ≥ 0, (3.31)

and we choose

∆m,1 =

[
0 0

−fm+2 0

]
, ∆m,2 =

[
0 0

−f ′m+2 0

]
, ∆m,3 =

[
0 0

−f ′′m+2 0

]
. (3.32)

Then, all enlarged zero curvature equations

Ūtm − V̄
[m]
x + [Ū , V̄ [m]] = 0, m ≥ 0, (3.33)

determine a hierarchy of coupling systems for the KdV equations:

ūtm =


utm
u1,tm

u2,tm

u3,tm

 = K̄m(ū) =


Km(u)

K′m(u)[u1]

K′m(u)[u2]

S3,m(u, u1, u2, u3)

 =


2 bm+2,x

2 fm+2,x

2 f ′m+2,x

2 f ′′m+2,x

 , m ≥ 0, (3.34)

where K′(u)[S] is the Gateaux derivative

K′(u)[S] =
∂

∂ε

∣∣∣
ε=0

K(u+ εS).

Obviously, the tri-integrable couplings of the KdV equation and the fifth-order KdV equation read

ut1 = 3
2
uux + 1

4
uxxx,

u1,t1 = 3
2
uu1,x + 3

2
uxu1 + 1

4
u1,xxx,

u2,t1 = 3
2
uu2,x + 3

2
uxu2 + 1

4
u2,xxx,

u3,t1 = 3
2

[uxu3 + uu3,x + (αu1,x + β u2,x)u1 + (β u1,x + µu2,x)u2] + 1
4
u3,xxx;
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ut2 = 15
8
u2ux + 5

8
uuxxx + 1

16
uxxxxx + 5

4
uxuxx,

u1,t2 = 15
8
u1,xu

2 + 1
16
u1,xxxxx + ( 15

4
uxu1 + 5

8
u1,xxx)u

+ 5
8
uxxxu1 + 5

4
(u1,xxux + uxxu1,x),

u2,t2 = 15
8
u2,xu

2 + 1
16
u2,xxxxx + ( 15

4
uxu2 + 5

8
u2,xxx)u

+ 5
8
uxxxu2 + 5

4
(u2,xxux + uxxu2,x),

u3,t2 = 15
8
u3,xu

2 + [ 15
4

(αu1,x + β u2,x)u1 + 15
4

(β u1,x + µu2,x)u2 + 15
4
uxu3 + 5

8
u3,xxx]u

+ 15
8
αuxu

2
1 + ( 15

4
β uxu2 + 5

8
αu1,xxx + 5

8
β u2,xxx)u1 + 15

8
µuxu

2
2

+ 5
8

(β u1,xxx + µu2,xxx)u2 + 5
8
uxxxu3 + 5

8
µu2,xu2,xx + 5

8
αu1,xu1,xx

+ 5
4
uxu3,xx + 5

4
u3,xuxx + 5

8
(αu1,xx + β u2,xx)u1,x

+ 5
8

(β u1,xx + µu2,xx)u2,x + 1
16
u3,xxxxx + 5

8
β (u2,xu1,xx + u1,xu2,xx);

respectively.

3.3 Bi-Hamiltonian structure
A bi-Hamiltonian structure of the presented tri-integrable couplings in (3.34) can be generated by applying the variational
identity [12, 13, 19]:

δ

δū

∫
〈∂Ū
∂λ

, W̄ 〉dx = λ−γ
∂

∂λ
λγ〈∂Ū

∂ū
, W̄ 〉, (3.35)

where 〈·, ·〉 is a non-degenerate, symmetric, and ad-invariant bilinear form on the non-semisimple Lie algebra ḡ.
Since the trace identity [10, 11] does not work with non-semisimple Lie algebras, we need to construct a specific

non-degenerate bilinear form on ḡ with the symmetric and ad-invariant properties.
To do this, we first transform the semi-direct sum ḡ into a vector form by defining mapping

σ : ḡ → R12, A 7→ (a1, · · · , a12)T , (3.36)

where

A = M(A1, A2, A3, A4) ∈ ḡ, Ai =

[
a3i−2 a3i−1

a3i −a3i−2

]
, 1 ≤ i ≤ 4. (3.37)

This mapping σ induces a Lie algebra structure on R12, with which R12 is isomorphic to the matrix Lie algebra ḡ. The
corresponding Lie bracket [·, ·] on R12 can be computed as follows

[a, b]T = aTR(b), a = (a1, · · · , a12)T , b = (b1, · · · , b12)T ∈ R12, (3.38)

where

R(b) = M(R1, R2, R2, R3), Ri =


0 2 b3i−1 −2 b3i

b3i −2 b3i−2 0

−b3i−1 0 2 b3i−2

 , 1 ≤ i ≤ 4. (3.39)

This Lie algebra (R12, [·, ·]) is isomorphic to the matrix Lie algebra ḡ, and the mapping σ, defined by (3.36), is a Lie
algebra isomorphism between the two Lie algebras.

Instead of defining a bilinear form on ḡ, we define a bilinear form on R12 by setting

〈a, b〉 = aTFb, (3.40)

where F is a constant matrix. It follows from the symmetric property 〈a, b〉 = 〈b, a〉 that

FT = F. (3.41)

Together with this symmetric condition, the ad-invariant property 〈a, [b, c]〉 = 〈[a, b], c〉 requires that

F (R(b))T = −R(b)F, b ∈ R12. (3.42)

This matrix equation with an arbitrary b yields to a linear system of equations for the entries of the matrix F to satisfy.
By solving the resulting system, we obtain

F =


η1 η2 η3 η4

η2 αη4 β η4 0

η3 β η4 µ η4 0

η4 0 0 0

⊗


2 0 0

0 0 1

0 1 0

 , (3.43)
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where ηi, 1 ≤ i ≤ 4, are arbitrary constants, and C ⊗D is the Kronecker product:

C ⊗D =



c1,1D c1,2D · · · c1,pD

c2,1D c2,2D · · · c2,pD

...
...

. . .
...

cn,1D cn,2D · · · cn,pD

 , C = (cij).

Since the mapping σ, defined by (3.36), is a Lie algebra isomorphism between ḡ and R12, the corresponding bilinear
form on the non-semisimple Lie algebra ḡ can be worked out as follows:

〈A,B〉ḡ = 〈σ(A), σ(B)〉R12 = (a1, · · · , a12)F (b1, · · · , b12)T

= (2 a1b1 + a2b3 + a3b2)η1 + (2 a1b4 + a2b6 + a3b5 + 2 a4b1

+a5b3 + a6b2)η2 + (2 a1b7 + a2b9 + a3b8 + 2 a7b1 + a8b3 + a9b2)η3

+(2 a1b10 + a2b12 + a3b11 + 2αa4b4 + 2β a4b7 + αa5b6 + β a5b9

+αa6b5 + β a6b8 + 2β a7b4 + 2µa7b7 + β a8b6 + µa8b9

+β a9b5 + µa9b8 + 2 a10b1 + a11b3 + a12b2)η4, (3.44)

where
A = σ−1((a1, · · · , a12)T ) ∈ ḡ, B = σ−1((b1, · · · , b12)T ) ∈ ḡ.

Again, because of the isomorphism σ, the bilinear form (3.44) is also symmetric and ad-invariant:

〈A,B〉ḡ = 〈B,A〉ḡ, 〈A, [B,C]〉ḡ = 〈[A,B], C〉ḡ, A,B,C ∈ ḡ.

It should be noted that this kind of bilinear forms is not of Killing type, since the matrix Lie algebra ḡ is non-semisimple.
It is easy to see that the bilinear form, defined by (3.44), is non-degenerate if and only if the determinant of matrix F

is non-zero, i.e.,
det(F ) = −16 η12

4 (αµ− β2)3 6= 0. (3.45)

Therefore, we can choose suitable constants α, β, µ and η4 such that det(F ) is non-zero to get non-degenerate bilinear
forms over ḡ.

It is now direct to compute that

〈W̄ ,
∂Ū

∂λ
〉ḡ = η1b+ η2f + η3 f

′ + η4 f
′′,

and

〈W̄ ,
∂Ū

∂ū
〉ḡ =


−η1b− η2f − η3 f

′ − η4 f
′′

−η2b− η4αf − η4β f ′

−η3b− η4β f − η4µ f
′

−η4b

 .
To calculate the parameter γ in the variational identity (3.35), we use the formula [12]:

γ = −λ
2

d

dλ
ln|〈W̄ , W̄ 〉|,

and find γ = 1
2

. Consequently, applying the corresponding variational identity, we obtain a Hamiltonian structure for the
hierarchy of tri-integrable couplings (3.34):

ūtm = J̄
δH̄m
δū

, m ≥ 0, (3.46)

with the Hamiltonian operator

J̄ =


η1 η2 η3 η4

η2 αη4 β η4 0

η3 β η4 µ η4 0

η4 0 0 0



−1

⊗ ∂, (3.47)

and the Hamiltonian functionals

Hm =

∫
4(η1bm+3 + η2fm+3 + η3 f

′
m+3 + η4 f

′′
m+3)

2m+ 3
dx, m ≥ 0. (3.48)
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Checking the recursion relation
K̄m = Φ̄K̄m−1, m ≥ 1, (3.49)

shows that the recursion operator Φ̄ reads

Φ̄ = Φ̄(ū) = MT (Φ,Φ1,Φ2,Φ3), (3.50)

where MT denotes the transpose of the matrix M defined in (2.13), and Φ is given by (3.10) and

Φi = ui +
1

2
ui,x∂

−1, 1 ≤ i ≤ 3. (3.51)

It can be directly verified that Φ̄ is hereditary [20], and J̄ and M̄ = Φ̄J̄ constitute a Hamiltonian pair [21]. Therefore,
the resulting hierarchy of tri-integrable couplings (3.34) has a bi-Hamiltonian structure

ūtm = J̄
δH̄m
δū

= M̄
δH̄m−1

δū
, m ≥ 1. (3.52)

This bi-Hamiltonian structure implies [20, 21] that

[K̄m, K̄n] := K̄′m(ū)[K̄n]− K̄′n(ū)[K̄m] = 0, m, n ≥ 0,

{H̄m, H̄n}J̄ :=

∫ (
δH̄m
δū

)T
J̄
δH̄n
δū

dx = 0, m, n ≥ 0.

That is, the hierarchy (3.34) possesses a common commuting symmetries {K̄n}∞n=0 and a common commuting conserved
functional {H̄n}∞n=0. It follows that every tri-integrable coupling in (3.34) is Liouville integrable.

4 Conclusion and remarks
We have successfully constructed a kind of tri-integrable couplings for the KdV hierarchy through a specific non-
semisimple Lie algebra consisting of 4 × 4 block matrices. All resulting tri-integrable couplings are bi-Hamiltonian
and Liouville integrable. The result also provides an affirmative answer to the question in the introduction: Can one put
two integrable couplings together to form an even larger integrable coupling?

Due to rich structures of block matrices, non-semisimple matrix loop algebras can yield various integrable couplings
with multiple components (see, e.g., [15, 22, 23, 24]), including bi-integrable couplings and tri-integrable couplings.
Actually, once a generating scheme associated with a non-semisimple Lie algebra is established, it can be applied to
different soliton hierarchies to engender integrable couplings.

We would like to emphasize that we are at the beginning of understanding multi-integrable couplings based on non-
semisimple matrix Lie algebras. There are lots of questions on theories of integrable couplings. Can one have any criterion
on non-semisimple Lie algebras to guarantee existence of Hamiltonian structures of associated integrable couplings? Note
that the first order perturbation has been successfully used [25, 26, 27] to generate Hamiltonian integrable couplings, even
local bi-Hamiltonian integrable systems in (2 + 1)-dimensions [26]. We conjecture that the second order perturbations
may be good candidates for enlarging Lax matrices to get more diverse Hamiltonian integrable couplings. Another basic
question is what kind of solution groups can be generated for integrable couplings by symmetry constraints as did for the
perturbation systems [28, 29]? It is also an interesting question to develop bilinear theories for dealing with integrable
couplings.
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