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ABSTRACT: The variational sequence theory in geometric mechanics is extended to second order velocity spaces over
smooth manifolds. New explicit formulas for the classes in this sequence, representing the variational objects such as La-
grangians, Euler-Lagrange forms and Helmholtz forms, are derived. The expressions, given in the canonical coordinates,
explain the structure of trivial Lagrangians on these underlying manifolds and allow straightforward applications in the
inverse problem of the calculus of variations. The differences between local and global variationality are discussed and
illustrated by examples. The variational theory of parameter-invariant problems of second order is considered in terms of
jet differential groups.
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1 INTRODUCTION
The variational sequence as considered in this paper was introduced by D. Krupka [2] as an adequate tool for the global
characterization of the Euler-Lagrange mapping of the calculus of variations on finite order jet spaces. Elements of
the variational sequence (classes of differential forms), represent the variational objects, well-known from the local
variational theory. The crucial meaning of the sequence is that the sequence morphisms (variational mappings such
as the Euler-Lagrange mapping, the Helmholtz mapping, etc.) can completely be determined without reference to the
underlying variational functionals and, moreover, differencies between their local and global properties can exactly be
formulated and characterized in terms of cohomology groups of underlying manifolds.

The goal in this paper is to study specific properties of variational sequences in higher order geometric mechanics when
the underlying manifolds are velocity spaces. Then, having in mind applications, we derive basic coordinate variational
formulas, esp. the Helmholtz variationality conditions, for 2nd order velocities.

Throughout, we use the Ehresmann’s theory of jets and jet differential groups. A detailed exposition of the underlying
structures we consider can be found in [5]; see also e.g. [1, 6, 9]. The basic notion of a differential form is used in
definition of the variational integral; in this sense we follow the general variational theory on fibred manifolds, see [4]
and the references therein. In Section 2, we give a review of the basic structures on underlying manifolds, including
formulas for further computations. Section 3 briefly describes the key notion of the contact differential form. In Section
4, we present general properties of the variational sequence theory and then specify the results to second order differential
forms on velocity manifolds. Beside local formulas, describing variational classes and mappings, we also give elementary
examples characterizing local and global inverse problem of the calculus of variations on velocity spaces in terms of
cohomology groups. Finally, in Section 5 we describe the variational functionals on second order velocity manifold, and
study their parameter-invariance.

2 VELOCITIES AND GRASSMANN FIBRATIONS
Let Y be a smooth manifold of dimension m, m ≥ 1. Let r ≥ 0. We denote by T rY the manifold of velocities of order
r over Y . An element of T rY , a velocity of order r at a point y of Y , is an r-jet P ∈ Jr

(0,y)(R,Y ), P = Jr
0ζ , with source

0 ∈ R and target y = ζ (0) ∈ Y , represented by a curve ζ in Y . A velocity P ∈ T rY is said to be regular, if P = Jr
0ζ is

represented by an immersion ζ at the origin 0 ∈ R. The set of regular velocities is denoted by ImmT rY . The canonical
jet projections of T rY onto T sY , are denoted by τr,s, where 0 ≤ s ≤ r, i.e. τr,s(Jr

0ζ ) = Js
0ζ . In the case of r = 1, T 1Y is

the tangent bundle of Y , and velocities of order r are also called tangent vectors of order r
Let us recall the standard manifold structures of T rY and ImmT rY . Every chart (V,ψ) on Y , where ψ =

(yK) = (y1,y2, . . . ,ym+1), induces a pair (V r,ψr), with V r = (τr,0)−1(V ) and a collection of functions ψr =
(yK ,yK

(1),y
K
(2), . . . ,y

K
(r)), defined on V r by yK

(l)(J
r
0ζ ) = Dl(yKζ )(0). Then the pairs (V r,ψr) form charts on T rY , called the

associated charts, and define a smooth manifold structure on T rY of dimension (m+1)(r+1). As an open subset of T rY ,
ImmT rY is endowed with the structure of open submanifold. For the lower order case, we write ẏK = yK

(1), ÿK = yK
(2),...y K = yK

(3).
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The structure of ImmT rY allows us to assign to every chart (V,ψ) on Y new collection of (m+1) charts on ImmT rY ,
(V r,L,ψr,L), by shrinking the coordinate functions ψr to the domains

V r,L = {Jr
0ζ ∈V r | ẏL(Jr

0ζ ) 6= 0}.

For every index L, 1 ≤ L ≤ m+ 1, we set ψr,L = (yL,yL
(1),y

L
(2), . . . ,y

L
(r),y

σ ,yσ

(1),y
σ

(2), . . . ,y
σ

(r)), where the index σ runs

through all values 1,2, . . . ,m + 1, not equal to L. Clearly, the charts (V r,L,ψr,L) define a differentiable structure on
ImmT rY .

The r-th order differential group Lr acts on manifold of velocities T rY to the right by composition of jets,

T rY ×Lr 3 (Jr
0ζ ,Jr

0α)→ Jr
0ζ ◦ Jr

0α = Jr
0(ζ ◦α) ∈ T rY, (1)

and clearly restricts to ImmT rY . Recall that an element of Lr is an r-jet Jr
0α , represented by a diffeomorphism α : I→ J

of open intervals in R such that α(0) = 0. The group operation of Lr is defined by composition of jets, and Lr with this
multiplication has a Lie group structure. The canonical coordinates on Lr are defined by a(l)(J

r
0α) = Dlα(0), 1≤ l ≤ r;

we denote ȧ = a(1), ä = a(2),
...a = a(3).

We introduce on ImmT rY another differentiable structure, related to action of the differential group Lr.

Lemma 1. Let (V,ψ), ψ = (yK), be a chart on Y , and let (V r,L,ψr,L) be an associated chart on ImmT rY for a fixed index
L, 1≤ L≤ m+1. Then there exists a unique collection of functions χr,L = (wL,wL

(1),w
L
(2), . . . ,w

L
(r),w

σ ,wσ
1 ,w

σ
2 , . . . ,w

σ
r )

on V r,L such that

yσ = wσ , yσ

(l) =
l

∑
p=1

∑
(I1,I2,...,Ip)

yL
|I1|y

L
|I2| . . .y

L
|Ip|w

σ
p , 1≤ l ≤ r, (2)

yL = wL, yL
(1) = wL

(1), yL
(2) = wL

(2), . . . , yL
(r) = wL

(r),

and (V r,L,χr,L) form a chart on ImmT rY . Moreover, the functions wL,wσ ,wσ
1 ,w

σ
2 , . . . ,w

σ
r are Lr-invariant.

The charts (V r,L,χr,L), 1 ≤ L ≤ m+1, define a differentiable structure on ImmT rY , and are referred to as L-adapted
to the chart (V,ψ).

The following lemma describes the action (1) in canonical and adapted coordinates. Denote by a(l), yK
(l), yK

(l) the

canonical coordinates of Jr
0α, Jr

0ζ and Jr
0(ζ ◦α), and denote by (wL

(l),w
σ
l ) and (wL

(l),w
σ
l ) the adapted coordinates of Jr

0ζ

and Jr
0(ζ ◦α), respectively.

Lemma 2. The group action (1), (Jr
0ζ ,Jr

0α)→ Jr
0ζ ◦ Jr

0α , is expressed in the associated chart (V r,L,ψr,L) by equations

yK = yK , yK
(l) =

l

∑
p=1

∑
(I1,I2,...,Ip)

a|I1|a|I2| . . .a|Ip|y
K
(p), 1≤ l ≤ r,

and, in the L-adapted chart (V r,L,χr,L), by

wL = wL, wL
(l) =

l

∑
p=1

∑
(I1,I2,...,Ip)

a|I1|a|I2| . . .a|Ip|w
L
(p), 1≤ l ≤ r,

wσ = wσ , wσ
1 = wσ

1 , wσ
2 = wσ

2 , . . . , wσ
r = wσ

r .

Let γ be a smooth curve in Y defined on an open interval I ⊂ R. The curve T rγ in T rY , defined by

I 3 t→ T r
γ(t) = Jr(γ ◦ tr−t) ∈ T rY, (3)

is called the r-jet prolongation of γ .
In the following lemma we consider the basic properties of T rγ .

Lemma 3. Let (V,ψ) be a chart on Y . If γ : I→ Y is a smooth curve, then the prolongation curve T rγ (3) satisfies:
(a) The chart expression of T rγ in the associated chart (V r,ψr) is given by

yK
(l) ◦T r

γ(t) = D(yK
(l−1) ◦T r−1

γ)(t) = Dl(yK ◦ γ)(t),

and in the adapted chart (V r,L,χr,L) by

wσ
l ◦T r

γ(t) = D(wσ
l−1 ◦T r−1

γ ◦ (wL ◦ γ)−1)(wL(γ(t))), wL
(s) ◦T r

γ(t) = Ds(wL ◦ γ)(t).

(b) For every diffeomorphism of open intervals µ : J→ I,

T r(γ ◦µ)(s) = T r
γ(µ(s))◦µ

r(s), (4)

where µr(s) = Jr
0(trµ(s) ◦µ ◦ tr−s) belongs to Lr for all s ∈ J.
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Although Y is not supposed to be a fibred manifold, we shall consider the associated trivially fibred manifold R×Y
over R, with projection π : R×Y → R and its product manifold structure. As it is usual, the r-jet prolongation of fibred
manifold R×Y is denoted by Jr(R×Y ), with elements r-jets Jr

xγ of sections γ of π at a point x ∈ R. The canonical
jet projections are denoted by πr : Jr(R×Y )→ R and πr,s : Jr(R×Y )→ Js(R×Y ); πr(Jr

xγ) = x, πr,s(Jr
xγ) = Js

xγ . The
canonical r-jet prolongation Jrγ of a section γ of π is a curve in Jr(R×Y ), defined by Jrγ(x) = Jr

xγ .
The manifold of higher order velocities arise from the jet prolongation of a fibred manifold. We can canonically identify

the r-jet prolongation Jr(R×Y ) of R×Y with the product manifold R×T rY by means of the mapping φ r : Jr(R×Y )→
R×T rY , defined by φ r(Jr

xγ) =
(
x,Jr

0(γ0 ◦ tr−x)
)
, where tr−x is a translation t → t + x of R, and γ is a section of R×Y ,

γ(t) = (t,γ0(t)). The inverse of φ r, (φ r)−1 : R× T rY → Jr(R×Y ), is then of the form (φ r)−1(x,Jr
0ζ ) = Jr

x ζ̃ , where
ζ̃ (t) = (t,ζ ◦ trx(t)). Obviously, the mapping φ r ◦ Jrγ = idR× T rγ0 is a section of trivially fibred manifold R× T rY .
Defining the canonical projection R×T rY →R×T sY by idR×τr,s, we get the commutative diagram (idR×τr,s)◦φ r =
φ s ◦πr,s; the induced canonical projection {0}×T rY →{0}×T sY we identify with τr,s. For every open set W ⊂ R×Y ,
we denote W r = φ r((πr,0)−1(W )) ⊂ R× T rY , and Wr

0 = pr2(W
r) = (τr,0)−1(pr2(W )) ⊂ T rY , where pr2 denotes the

second Cartesian projection of R×T rY .
We now introduce the concepts of formal derivative morphism and formal derivative of a function, adapted to our

approach (cf. [8, 5]). Let an element Jr
0ζ ∈ T rY be given. The representative ζ of Jr

0ζ induces the (r−1)-jet prolongation
T r−1ζ , and the tangent mapping at the origin 0 ∈ R, T0T r−1ζ , sending a tangent vector of T0R to a tangent vector of
T r−1Y at the point τr,r−1(Jr

0ζ ) = Jr−1
0 ζ . Denoting t the canonical coordinate on R, we define the vector field δ along the

projection τr,r−1 by δ (Jr
0ζ ) = T0T r−1ζ · (d/dt)0, called the formal derivative morphism of order r. If (V,ψ), ψ = (yK),

is a chart on Y , we get the coordinate expression of δ of the form

δ (Jr
0ζ ) =

r−1

∑
l=0

yK
(l+1)(J

r
0ζ )

(
∂

∂yK
(l)

)
Jr−1

0 ζ

. (5)

Let (V,ψ), ψ = (yK), be a chart on Y , and f : V r−1→R be a function. Formula (5) then induces a function δ ( f ) : V r→R,
called the formal derivative of function f . Restricting the formal derivative morphism δ to ImmT rY , we define an
associated morphism d/dwL : ImmT rY ⊃V r,L→ T ImmT r−1Y by d/dwL = (1/ẏL)δ . It is not difficult to express d/dwL

in terms of an L-adapted chart (V r,L,χr,L); we get

d
dwL =

∂

∂wL +
r−1

∑
l=0

wσ
l+1

∂

∂wσ
l
+

r−1

∑
s=1

wL
(s+1)

ẇL
∂

∂wL
(s)

.

With respect to L-adapted chart (V r,L,χr,L), the induced formal derivative of a function f : V r,L → R is denoted by
d f/dwL.

The formal derivative of a function f , defined on an open subset of Jr−1(R×Y ), is in a fibred chart (U,ϕ), ϕ = (t,yK),
on R×Y , denoted by d f/dt.
Remark 1. (Second order formulas) The transformation formulas between second order charts (V 2,L,ψ2,L) and
(V 2,L,χ2,L) are given by

yL = wL, ẏL = ẇL, ÿL = ẅL, yσ = wσ , ẏσ = wσ
1 ẇL, ÿσ = wσ

2 (ẇ
L)2 +wσ

1 ẅL,

wL = yL, ẇL = ẏL, ẅL = ÿL, wσ = yσ , wσ
1 =

ẏσ

ẏL , wσ
2 =

1
(ẏL)2

(
ÿσ − ÿL

ẏL ẏσ

)
,

and the canonical group action (1) is expressed in associated and adapted charts by

yK = yK , ẏK
= ẏK ȧ, ÿK

= ÿK ȧ2 + ẏK ä,

wL = wL, ẇL
= ẇLȧ, ẅL

= ẅLȧ2 + ẇLä, wσ = wσ , wσ
1 = wσ

1 , wσ
2 = wσ

2 .

The chart expressions of the 2-jet prolongation T 2γ of a curve γ in Y , are given by

wL ◦T 2
γ(t) = wL ◦ γ(t), ẇL ◦T 2

γ(t) = D(wL ◦ γ)(t), ẅL ◦T 2
γ(t) = D2(wL ◦ γ)(t),

wσ ◦T 2
γ(t) = wσ ◦ γ(t), wσ

1 ◦T 2
γ(t) = D(wσ ◦ γ ◦ (wL ◦ γ)−1)(wL(γ(t))),

wσ
2 ◦T 2

γ(t) = D(wσ
1 ◦ γ ◦ (wL ◦ γ)−1)(wL(γ(t))),

and if µ : J→ I is a diffeomorphism of open intervals, we get from Lemma 3, (b), expressions for the curve T 2(γ ◦µ) on
J,

wL ◦T 2(γ ◦µ)(s) = wL ◦T 2
γ(µ(s)), ẇL ◦T 2(γ ◦µ)(s) = ẇL ◦T 2

γ(µ(s))ȧ(µ2(s)),

ẅL ◦T 2(γ ◦µ)(s) = ẅL ◦T 2
γ(µ(s))ȧ(µ2(s))2 + ẇL ◦T 2

γ(µ(s))ä(µ2(s)),

wσ ◦T 2(γ ◦µ)(s) = wσ ◦T 2
γ(µ(s)), wσ

1 ◦T 2(γ ◦µ)(s) = wσ
1 ◦T 2

γ(µ(s)),

wσ
2 ◦T 2(γ ◦µ)(s) = wσ

2 ◦T 2
γ(µ(s)),

where µ2(s) = J2
0 (trµ(s) ◦µ ◦ tr−s) is an element of second order differential group L2.
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3 DIFFERENTIAL FORMS
Let W be an open subset of manifold R×Y , and W r the r-jet prolongation of W in R×T rY . Let Ωr

0W denotes the ring
of smooth functions defined on W r, and Ωr

kW the Ωr
0W -module of smooth differential k-forms defined on W r.

We say that a 1-form ρ ∈Ωr
1W is contact, if

(idR×T r
ζ )∗ρ = 0 (6)

for all curves ζ in Y , defined on the open set π(W )⊂ R.
In next sections we shall consider the forms η ∈ Ωr

kW , defined on Wr
0 = pr2(W

r) ⊂ T rY , where pr2 denotes the
second Cartesian projection of R×T rY . These forms define Ωr

0,0W -module, denoted by Ωr
k,0W , where Ωr

0,0W is a ring
of smooth functions on W r

0 .
The definition of contactness (6) now reduces for differential forms on velocity spaces in the following sense. We say

that a 1-form ρ ∈Ωr
1,0W is contact, if

(T r
ζ )∗ρ = 0 (7)

for all smooth curves ζ in Y , defined on the open set π(W )⊂ R.
Note that both of these definitions of contactness (6) and (7) imply that every function f is contact if and only if f

vanishes identically, and that every k-form is contact for k ≥ 2.
The following lemma describes the local structure of contact 1-forms of Ωr

1W and Ωr
1,0W .

Lemma 4. (a) Let (U,ϕ), ϕ = (t,yK), be a chart on R×Y such that U ⊂W. Let ρ ∈Ωr
1W be a 1-form, locally expressed

by ρ = Adt +∑
r
l=0 Bl

KdyK
(l). Then ρ is contact if and only if

ρ =
r−1

∑
l=0

Bl
Kω

K
(l),

where
ω

K
(l) = dyK

(l)− yK
(l+1)dt, 0≤ l ≤ r−1. (8)

(b) Let (V,ψ), ψ = (yK), be a chart on Y such that π(W )×V ⊂W. Let ρ ∈Ωr
1,0W be a 1-form, locally expressed by

ρ = ∑
r
l=0 Al

KdyK
(l). Then ρ is contact if and only if

Ar
K = 0,

r−1

∑
l=0

Al
KyK

(l+1) = 0.

Moreover, if ρ is expressed in an L-adapted chart (V r,L,ψr,L) on Wr
0∩ ImmT rY by ρ = ∑

r
l=0 Al

σ dyσ

(l)+∑
r
s=0 As

LdyL
(s)

(no summation through L), then ρ is contact if and only if

ρ =
r−1

∑
l=0

Al
σ η

σ

(l)+
r−1

∑
s=1

As
Lη

L
(s),

where

η
σ

(l) = dyσ

(l)−
yσ

(l+1)

ẏL dyL, η
L
(s) = dyL

(s)−
yL
(s+1)

ẏL dyL, (9)

and if ρ = ∑
r
l=0 Al

σ dwσ
l +∑

r
s=0 As

LdwL
(s) (no summation through L) in an L-adapted chart (V r,L,χr,L) on Wr

0∩ ImmT rY ,
then ρ is contact if and only if

ρ =
r−1

∑
l=0

Al
σ η

σ
l +

r−1

∑
s=1

As
Lη

L
(s),

where

η
σ
l = dwσ

l −wσ
l+1dwL, η

L
(s) = dwL

(s)−
wL
(s+1)

ẇL dwL. (10)

Proof. Both assertions (a) and (b) immediately follow from a calculation of pull-back in the definition of contactness (6)
and (7), respectively.

Remark 2. We note that if a 1-form ρ ∈Ωr
1,0W is contact in sense of (10) (or (9)), then it is also contact in sense of (8),

after the lift by means of second canonical projection pr2 : R× ImmT rY → ImmT rY . In particular, the contact forms ησ
l ,

ηL
(s) (10) of Ωr

1,0W transform to contact forms ωK
(l) (8) of Ωr

1W . For example, if r = 2, we get

η
σ = ω

σ − ẏσ

ẏL ω
L, η

σ
1 =

1
ẏL ω̇

σ − 1
(ẏL)2

(
ÿσ − ÿL

ẏL ẏσ

)
ω

L− ẏσ

(ẏL)2 ω̇
L, η̇

L = ω̇
L− ÿL

ẏL ω
L.
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We note that, clearly, 1-forms (8), ωK
(l), 0≤ l ≤ r−1, and (10), ησ

l , ηL
(s), where 0≤ l ≤ r−1, 1≤ s≤ r−1, are contact

and linearly independent. The 1-forms {dt, ωK
(l), dyK

(r)}, {dwL, ησ
l , ηL

(s), dwσ
r , dwL

r }, define a contact basis of linear

forms on W r and W r
0 , respectively. As usual, for r ≤ 3 we denote the contact 1-forms (8) by ωK = ωK

(0), ω̇K = ωK
(1),

ω̈K = ωK
(2), and

...
ω

K = ωK
(3).

The ideal of the exterior algebra of differential forms, generated by contact 1-forms, is called the contact ideal. A dif-
ferential form is said to be contact, if it belongs to the contact ideal. A contact form, containing exactly k exterior factors
(8), resp. (10), is said to be k-contact.

It is well-known that k-contact forms, generated by contact 1-forms (8), form a submodule of the module Ωr
kW of

differential forms, defined on a prolongation of a fibred manifold; in our case Jr(R×Y ) isomorphic to R×T rY .

Lemma 5. Let W be an open subset of R×Y , and (V1,ψ1), ψ1 = (yK), (V2,ψ2), ψ2 = (ȳK), be two charts on Y such
that V1,V2 ⊂ pr2(W ), V1∩V2 6= /0. If (V r,L

1 ,χr,L
1 ) and (V r,M

2 ,χr,M
2 ) are two adapted charts on W r

0 ∩ ImmT rY , then

η̄
ν
p =

(
∂ w̄ν

p

∂wσ
+ w̄ν

p+1
∂ w̄M

∂wσ

)
η

σ +
p

∑
l=1

∂ w̄ν
p

∂wσ
l

η
σ
l +

p

∑
s=1

∂ w̄ν
p

∂wL
(s)

η
L
(s),

η̄
M
(q) =

(
∂ w̄M

(q)

∂wσ
+

w̄M
(q+1)
˙̄wM

∂ w̄M

∂wσ

)
η

σ +
q

∑
l=1

∂ w̄M
(q)

∂wσ
l

η
σ
l +

q

∑
s=1

∂ w̄M
(q)

∂wL
(s)

η
L
(s),

where 0≤ p≤ r−1, and 1≤ q≤ r−1.

Proof. The transformation properties are obtained by a straightforward calculation.

Corollary. k-contact forms on W r
0 ∩ ImmT rY , constitute a submodule of the module of differential forms Ωr

k,0W.

It is the standard result that the pull-back of a differential form ρ ∈ Ωr
kW , by means of the canonical jet projection

πr+1,r, can be uniquely decomposed into its contact components (see e.g. [3]). We have

(πr+1,r)∗ρ = pk−1ρ + pkρ, (11)

where pk−1ρ is the (k− 1)-contact component, and pkρ is the k-contact component of ρ . We note that an analogous
contact decomposition formula holds also for differential forms of Ωr

k,0W , defined on an open subset of manifold of
regular velocities ImmT rY (see [9]).

4 THE VARIATIONAL SEQUENCE
Let Y be a smooth manifold, dimY = m. Let W ⊂ R×Y be an open set, W r its r-jet prolongation to R×T rY , and Ωr

kW
be the module of smooth differential k-forms, defined on W r. Let (c)Ωr

kW denotes the submodule of Ωr
kW of k-contact

k-forms. Denote
(c)

Ω
r
0W = {0}, Θ

r
kW = (c)

Ω
r
kW +d(c)

Ω
r
k−1W, (12)

in the sense that a k-form ρ ∈ Ωr
kW belongs to Θr

kW if and only if ρ has a local decomposition ρ = ρ0 + dρ ′ for some
ρ0 ∈ (c)Ωr

kW and ρ ′ ∈ (c)Ωr
k−1W . Θr

kW is a subgroup of the Abelian group Ωr
kW , and we get a subsequence of Abelian

groups
0→Θ

r
1W →Θ

r
2W → . . .→Θ

r
MW → 0 (13)

of the DeRham sequence

0→ R→Ω
r
0W →Ω

r
1W → . . .→Ω

r
MW →Ω

r
M+1W → . . .→Ω

r
NW → 0, (14)

where the morphisms denote the exterior derivative d, and M = mr+1, N = dim(R×T rY ) = m(r+1)+1.

Theorem 1. Let W be an open set in R×Y . Then Θr
kW is a direct sum of the module (c)Ωr

kW and of the image of the
module (c)Ωr

k−1W in exterior derivative operator d, i.e. if ρ ∈ Θr
kW, then there exist unique forms ρ0 ∈ (c)Ωr

kW and
ρ ′ ∈ (c)Ωr

k−1W such that ρ = ρ0 +dρ ′ on a neighbourhood in W r.

Proof. It is sufficient to show uniqueness of the decomposition ρ = ρ0 +dρ ′ in some chart on W r. The proof is based on
the structure of k-contact and (k−1)-contact forms, and in case of arbitrary fibred manifold with one-dimensional base
it can be found in Krupka [3].

As a consequence of Theorem 1 and Poincaré lemma for contact forms (cf. [3]), we observe that the subsequence (13)
is exact, and it is said to be the contact subsequence of the DeRham sequence (14).

The quotient sequence

0→ R→Ω
r
0W →Ω

r
1W/Θ

r
1W → . . .→Ω

r
MW/Θ

r
MW →Ω

r
M+1W → . . .→Ω

r
NW → 0, (15)

where the quotient mappings E : Ωr
kW/Θr

kW →Ωr
k+1W/Θr

k+1W are defined by

E([ρ]) = [dρ], (16)
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is then also exact. In (16), [ρ] denotes the class of a form ρ . It is easily seen that the mappings (16) are well-defined. The
sequence (15) is said to be the variational sequence of order r on R×T rY (cf. [3, 8]).

For concrete coordinate calculations of classes, entering the variational sequence, the following result is important.
For any form ρ ∈Ωr

kW , the class of ρ and the class of lifted form (τr+1,r)∗ρ can be identified.

Theorem 2. The quotient mapping Ωr
kW/Θr

kW →Ω
r+1
k W/Θ

r+1
k W is injective.

Proof. We refer to [3] and [9].

Classes of forms on T 2Y
The following lemma describes, by means of canonical coordinates, the classes of differential forms on T 2Y , as elements
of the second order variational sequence on fibred velocity manifold R×T 2Y .

Lemma 6. Let (U,ϕ), ϕ = (t,yK), be a chart on R×Y , and (U2,ϕ2), ϕ2 = (t,yK , ẏK , ÿK), the associated chart on
W 2 ⊂ R×T 2Y .

(a) Let ρ ∈ Ω2
1,0W be locally expressed by ρ = AKdyK + ȦKdẏK + ÄKdÿK . Then the class [ρ] is an element of

Ω3
1W/Θ3

1W, given by

[ρ] =
(

AK ẏK + ȦK ÿK + ÄK
...y K
)

dt. (17)

(b) Let ρ ∈Ω2
2,0W be locally expressed by

ρ =
1
2

AKMdyK ∧dyM + ȦK,MdẏK ∧dyM + ÄK,MdÿK ∧dyM (18)

+
1
2

BKMdẏK ∧dẏM +BK,MdÿK ∧dẏM +
1
2

CKMdÿK ∧dÿM .

Then the class [ρ] is an element of Ω5
2W/Θ5

2W, given by

[ρ] = EK([ρ])ω
K ∧dt, (19)

where

EK([ρ]) = AKM ẏM− ȦM,K ÿM− ÄM,K
...y M− d

dt
(ȦK,M ẏM +BKM ÿM−BM,K

...y M)

+
d2

dt2 (ÄK,M ẏM +BK,M ÿM +CKM
...y M).

(c) Let ρ ∈Ω2
3,0W be locally expressed by

ρ =
1
6

AKMNdyK ∧dyM ∧dyN +
1
2

ȦK,MNdẏK ∧dyM ∧dyN +
1
2

ȦKM,NdẏK ∧dẏM ∧dyN

+
1
2

ÄK,MNdÿK ∧dyM ∧dyN + ÄK,M,NdÿK ∧dẏM ∧dyN +
1
2

ÄKM,NdÿK ∧dÿM ∧dyN

+
1
6

BKMNdẏK ∧dẏM ∧dẏN +
1
2

BK,MNdÿK ∧dẏM ∧dẏN +
1
2

BKM,NdÿK ∧dÿM ∧dẏN

+
1
6

CKMNdÿK ∧dÿM ∧dÿN .

Then the class [ρ] is an element of Ω7
3W/Θ7

3W, given by

[ρ] =
1
2

E0
MK([ρ])ω

M ∧ω
K ∧dt +E1

M,K([ρ])ω̇
M ∧ω

K ∧dt +
1
2

E2
MK([ρ])ω̈

M ∧ω
K ∧dt

+ E3
M,K([ρ])

...
ω

M ∧ω
K ∧dt +

1
2

E4
MK([ρ])ω

M
(4)∧ω

K ∧dt, (20)

where

E4
MK([ρ]) = ÄMK,N ẏN +BMK,N ÿN +CMKN

...y N ,

E3
M,K([ρ]) = −1

2

(
(ÄM,K,N + ÄK,M,N)ẏN +(BM,KN +BK,MN)ÿN +(BNM,K +BNK,M)

...y N
)
,

E2
MK([ρ]) = (ȦKM,N − ÄK,MN + ÄM,KN)ẏN +(BKMN + ÄK,N,M− ÄM,N,K)ÿN

+(BN,KM− ÄNK,M + ÄNM,K)
...y N

−1
2

d
dt

(
(ÄK,M,N − ÄM,K,N)ẏN +(BK,MN −BM,KN)ÿN +(BNK,M−BNM,K)

...y N
)

+2
d2

dt2

(
ÄKM,N ẏN +BKM,N ÿN +CKMN

...y N
)
,
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E1
M,K([ρ]) =

1
2

(
(ȦM,KN + ȦK,MN)ẏN +(ȦNM,K + ȦNK,M)ÿN +(ÄN,M,K + ÄN,K,M)

...y N

− d
dt

(
(ÄM,KN + ÄK,MN)ẏN − (ÄM,N,K + ÄK,N,M)ÿN +(ÄNM,K + ÄNK,M)

...y N
)

+
d2

dt2

(
(ÄM,K,N + ÄK,M,N)ẏN +(BM,KN +BK,MN)ÿN +(BNM,K +BNK,M)

...y N
))

,

E0
MK([ρ]) = AMKN ẏN − ȦN,KM ÿN − ÄN,KM

...y N

−1
2

d
dt

(
(ȦM,KN − ȦK,MN)ẏN +(ȦNM,K − ȦNK,M)ÿN +(ÄN,M,K − ÄN,K,M)

...y N
)

+
1
2

d2

dt2

(
ȦMK,N ẏN +BMKN ÿN +BN,MK

...y N
)

−1
4

d3

dt3

(
(ÄM,K,N − ÄK,M,N)ẏN +(BM,KN −BK,MN)ÿN +(BNM,K −BNK,M)

...y N
)

+
1
2

d4

dt4

(
ÄMK,N ẏN +BMK,N ÿN +CMKN

...y N
)
.

Proof. We compute the pull-backs of η in canonical projections τr,s : R×T rY →R×T sY , and apply the contact decom-
position of forms (11), together with the property dωK

(l) =−ωK
(l+1)∧dt. The lifted form η is then factorized by means of

contact forms (12).

Now, we find the local structure of the quotient mappings E : Ωr
0W →Ωr

1W/Θr
1W , E : Ωr

1W/Θr
1W →Ωr

2W/Θr
2W , and

E : Ωr
2W/Θr

2W →Ωr
3W/Θr

3W , which appear in the sequence (15).

Lemma 7. Let (U,ϕ), ϕ = (t,yK), be a chart on R×Y , and (U2,ϕ2), ϕ2 = (t,yK , ẏK , ÿK), the associated chart on
W 2 ⊂ R×T 2Y .

(a) For a function f ∈Ω2
0,0W it holds E( f ) = E([ f ]) = (d f/dt)dt.

(b) If 1-form ρ ∈Ω2
1,0W is locally expressed by ρ = AKdyK + ȦKdẏK + ÄKdÿK , then

E([ρ]) = EK([dρ])ωK ∧dt, (21)

where

EK([dρ]) =
∂AM

∂yK ẏM +
∂ ȦM

∂yK ÿM +
∂ ÄM

∂yK
...y M− d

dt

(
∂AM

∂ ẏK ẏM +AK +
∂ ȦM

∂ ẏK ÿM +
∂ ÄM

∂ ẏK
...y M
)

+
d2

dt2

(
∂AM

∂ ÿK ẏM +
∂ ȦM

∂ ÿK ÿM + ȦK +
∂ ÄM

∂ ÿK
...y M
)
− d3ÄK

dt3 .

(c) If 2-form ρ ∈Ω2
2,0W is locally expressed by (26), then

E([ρ]) =
1
2

E0
MK([dρ])ωM ∧ω

K ∧dt +E1
M,K([dρ])ω̇M ∧ω

K ∧dt (22)

+
1
2

E2
MK([dρ])ω̈M ∧ω

K ∧dt +E3
M,K([dρ])

...
ω

M ∧ω
K ∧dt

+
1
2

E4
MK([dρ])ωM

(4)∧ω
K ∧dt,

where the coefficients are determined by a class (20) of 3-form dρ .

Proof. By the definition of morphisms E (16), we apply formulas for classes from Lemma 6 to exterior derivative of
forms.

The classes of exterior derivatives of forms, determined by Lemma 7, are closely related to variational objects, well-
known from local variational theory.

Let (U,ϕ), ϕ = (t,yK), be a chart on R×Y , and consider a 1-form ρ ∈Ω2
1,0W , locally expressed by

ρ = AKdyK + ȦKdẏK + ÄKdÿK . (23)

We define a Lagrange function L :V 3→ R by

L = AK ẏK + ȦK ÿK + ÄK
...y K , (24)

and the corresponding Euler-Lagrange expressions εK(L ) : V 5→ R by

εK(L ) =
∂L

∂yK −
d
dt

∂L

∂ ẏK +
d2

dt2
∂L

∂ ÿK −
d3

dt3
∂L

∂
...y K . (25)
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Note that by Lemma 6, we have [ρ] = L dt.
Consider now a 2-form ρ ∈Ω2

2,0W , locally expressed by (18). Denote

εP = APM ẏM− ȦM,PÿM− ÄM,P
...y M− d

dt
(ȦP,M ẏM +BPM ÿM−BM,P

...y M) (26)

+
d2

dt2 (ÄP,M ẏM +BP,M ÿM +CPM
...y M).

Then by Lemma 6, [ρ] = εPωP∧dt, and we define the corresponding Helmholtz expressions by

H 5
KM(εP) =

∂εK

∂yM
(5)

+
∂εM

∂yK
(5)

,

H 4
KM(εP) =

∂εK

∂yM
(4)
− ∂εM

∂yK
(4)
− 5

2
d
dt

(
∂εK

∂yM
(5)
− ∂εM

∂yK
(5)

)
,

H 3
KM(εP) =

1
2

(
∂εK

∂yM
(3)

+
∂εM

∂yK
(3)
−2

d
dt

(
∂εK

∂yM
(4)

+
∂εM

∂yK
(4)

))
, (27)

H 2
KM(εP) =

∂εK

∂yM
(2)
− ∂εM

∂yK
(2)
− 3

2
d
dt

(
∂εK

∂yM
(3)
− ∂εM

∂yK
(3)

)
+

5
2

d3

dt3

(
∂εK

∂yM
(5)
− ∂εM

∂yK
(5)

)
,

H 1
KM(εP) =

1
2

(
∂εK

∂yM
(1)

+
∂εM

∂yK
(1)
− d

dt

(
∂εK

∂yM
(2)

+
∂εM

∂yK
(2)

)
+

d3

dt3

(
∂εK

∂yM
(4)
− ∂εM

∂yK
(4)

))
,

H 0
KM(εP) =

∂εK

∂yM −
∂εM

∂yK −
1
2

d
dt

(
∂εK

∂yM
(1)
− ∂εM

∂yK
(1)

)
+

1
4

d3

dt3

(
∂εK

∂yM
(3)
− ∂εM

∂yK
(3)

)

−1
2

d5

dt5

(
∂εK

∂yM
(5)
− ∂εM

∂yK
(5)

)
.

From Lemma 7, (a), we see that the morphism E : Ωr
0W →Ωr

1W/Θr
1W in the first column of the variational sequence

(15) is characterized by the total derivative operator. The following theorem characterizes the morphisms of (15) in the
second and third columns; the mappings E : Ωr

1W/Θr
1W →Ωr

2W/Θr
2W and E : Ωr

2W/Θr
2W →Ωr

3W/Θr
3W .

,

Theorem 3. Let (U,ϕ), ϕ = (t,yK), be a chart on R×Y , and (U2,ϕ2), ϕ2 = (t,yK , ẏK , ÿK), the associated chart on
W 2 ⊂ R×T 2Y .

(a) If a 1-form ρ ∈ Ω2
1,0W is locally expressed by (23), then the coeficients of [dρ] (21) coincide with the Euler-

Lagrange expressions of the associated Lagrange function L (24),

EK([dρ]) = εK(L ).

(b) If a 2-form ρ ∈ Ω2
2,0W is locally expressed by (18), then the coeficients of [dρ] (22) coincide with the Helmholtz

expressions of εP (26),

E0
MK([dρ]) = H 0

KM(εP), E1
M,K([dρ]) = H 1

KM(εP), E2
MK([dρ]) = H 2

KM(εP),

E3
M,K([dρ]) = H 3

KM(εP), E4
MK([dρ]) = H 4

KM(εP).

Proof. The proof is based on results, given by Lemma 6, Lemma 7, and direct calculations.

Remark 3. In this remark we briefly discuss some global aspects of the theory of variational sequences on velocity
manifolds as considered in this work; complete discussion goes outside the scope of this paper. By definition, the Euler-
Lagrange mapping as well as the Helmholtz mapping are morphisms of the variational sequence. Consequently, the
concepts of the kernel and the image of these mappings are well defined, and one can determine the cohomology groups
of the corresponding complex of global sections.

We have constructed the variational sequence (15) on the fibred manifold R×Y ; thus, applying to this Cartesian
product the Künneth formula, we see that the De Rham cohomology groups satisfy Hk(R×Y ) = HkY .

Consider the Euler-Lagrange morphism. By exactness of the variational sequence, if the Helmholtz class of the exterior
derivative of a 2-form ρ vanishes, [dρ] = 0, then the class of ρ , [ρ] coincides, locally, with the class [dη ] for a 1-form η .
In other words, if the Helmholtz expressions (27) vanish, then expressions (26) are locally variational, i.e., are locally of
the form (25). In this sense the Helmholtz expressions define local variationality conditions.

However, a locally variational form may not be globally variational; it may happen that it does not possess a global
Lagrangian. It follows from the properties of the variational sequence that a sufficient (topological) condition for existence
of a global Lagrangian is the vanishing of the second cohomology group of the underlying fibred manifold, that is,
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H2(R×Y ) = 0. Applying to this general result of the Künneth formula, we see that if a source form ε = εPωP ∧ dt is
locally variational and in addition H2Y = 0, then ε has a global Lagrangian.

If for example Y = Rm, then since HkRm = 0 for every k, 1≤ k ≤ m, local variationality for source forms on Y = Rm

always implies global variationality. If Y is the sphere Sm, then HkSm = 0 for every m ≥ 2 and k, 1 ≤ k ≤ m− 1; thus
we again get H2Sm = 0 whenever m ≥ 3. If m = 2, then H2S2 = R 6= 0, thus local variationality does not imply global
variationality. Similarly, if Y = S1× S1 is the torus, we get since H2(S1× S1) = R 6= 0. If Y is the Möbius strip or the
Klein bottle, in both cases H2Y = 0, and local variationality automatically implies global variationality.

5 INVARIANT VARIATIONAL FUNCTIONALS
In this section we study parameter invariance of variational functionals, associated with 1-forms on manifold of regular
velocities. For purpose of applications, we consider second order case. Let W0 be an open subset of Y , and W 2

0 =
(τ2,0)−1(W0)⊂ T 2Y .

Consider a 1-form ρ ∈Ω2
1,0W , defined on W 2

0 ∩ ImmT 2Y . Recall that every diffeomorphism µ : J→ I of open intervals
induces a curve s→ µ2(s) in L2, defined on J (4).

Let γ : I →W0 ⊂ Y be an immersion. Any compact subinterval K of I associates with 1-form ρ the variational
functional ρK , defined by

γ → ρK(γ) =
∫

K
(T 2

γ)∗ρ (28)

on the set immersions γ : K→W0 ⊂ Y of class C2.

Lemma 8. Let ρ ∈Ω2
1,0W be a 1-form, and γ : I→W0 ⊂Y be an immersion. Let µ : J→ I be a diffeomorphism of open

intervals such that Dµ > 0 on J. The following conditions are equivalent:
(a) For any compact subinterval K ⊂ I, the variational functional ρK is invariant with respect to reparametrization by

diffeomorphism µ ,
ρK(γ) = ρµ−1(K)(γ ◦µ). (29)

(b) ρ satisfies
(T 2

γ)∗ρ = (µ−1)∗(T 2(γ ◦µ))∗ρ. (30)

Proof. This equivalence condition is a direct consequence of the change of variables theorem for integrals. We show that
(a) implies (b). Since Dµ > 0 on J,

ρµ−1(K)(γ ◦µ) =
∫

µ−1(K)
(T 2(γ ◦µ))∗ρ =

∫
K
(µ−1)∗(T 2(γ ◦µ))∗ρ. (31)

The condition (29) holds for any compact subinterval K ⊂ I, hence the integrands of ρK(γ) and ρµ−1(K)(γ ◦µ) coincide
which directly results in (30). The converse is now obvious.

The variational functional ρK is said to be parameter-invariant, if one of the equivalent conditions of Lemma 8 is
satisfied for every diffeomorphism µ : J→ I of open intervals such that Dµ > 0 on J, and for every immersion γ : I→Y .
Condition (29), satisfied for all µ , also means that the variational integral ρK(γ) does not depend on parametrization.

Now we find the necessary and sufficient conditions for a 1-form ρ to associate a parameter-invariant variational
functional.

Theorem 4. Let (V,ψ), ψ = (yK), be a chart on Y such that V ⊂W0. Let 1-form ρ ∈ Ω2
1,0W be expressed by means of

the contact basis in L-adapted chart (V 2,L,χ2,L),

ρ = ALdwL +Aσ η
σ + ȦLη̇

L +A1
σ η

σ
1 + ÄLdẅL +A2

σ dwσ
2 . (32)

The following two conditions are equivalent:
(a) Variational functional ρK is parameter-invariant.
(b) The coefficients of ρ satisfy: ÄL vanishes identically on V 2,L, and AL, A2

σ do not depend on ẇL, ẅL.

Proof. Suppose that ρK , associated with 1-form ρ (32) for a given compact subinterval K, satisfies (a). Thus, by defi-
nition, we assume ρ satisfies condition (30) for every diffeomorphism µ such that Dµ > 0, and every immersion γ with
values in W0 ⊂ Y . Applying formulas of the chart expression of r-jet prolongation of a curve (see Lemma 3 and Remark
1), we obtain after a direct calculation the expressions of (T 2γ)∗ρ and (µ−1)∗(T 2(γ ◦µ))∗ρ = (T 2(γ ◦µ)◦µ−1)∗ρ ,

(T 2
γ)∗ρ(t) =

(
AL + ÄL

...wL

ẇL +A2
σ wσ

3

)
dwL ◦T 3

γ(t),

and

(µ−1)∗(T 2(γ ◦µ))∗ρ(t) =

(
AL(T 2

γ(t)◦ J2
0 µµ−1(t))+A2

σ (T
2
γ(t)◦ J2

0 µµ−1(t))w
σ
3

+ ÄL(T 2
γ(t)◦ J2

0 µµ−1(t))

...wL(ȧ)3 +3ẅLäȧ+ ẇL...a
ȧẇL

)
dwL ◦T 3

γ(t),
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where ȧ, ä, and ...a denotes coordinates of J2
0 µµ−1(t) ∈ L2. Condition (30) then already implies (b). To show the converse,

it is sufficient to verify condition (30) for ρ with specific coefficients given by (b). However, this is immediate.

Theorem 4 can be directly restated as follows.

Corollary. A 1-form ρ defines parameter-invariant variational functional ρK if and only if there exists a decomposition
of ρ ,

ρ = ρ0 +ρc, (33)

where ρ0 is projectable onto the quotient space ImmT 2Y/L2, called the Grassmann fibration of Y , and ρc is a contact
form on ImmT 2Y in sense of Lemma 4, (b). Then however, (33) means that the class of ρ coincides with the class of ρ0.

Note that the class of 1-form ρ in sense of contact forms from Lemma 4 differs from the class, computed in Lemma
6, as en element of Ω3

1W/Θ3
1W . However, it can be easily shown that these classes coincide after pull-back by means of

canonical prolongation T 3γ .
Suppose ρ ∈Ω2

1,0W is expressed in the contact basis by (32). Let γ : I→ Y be an immersion of open interval I into Y
such that γ(I)⊂W0, and T 2γ(I)⊂V 2,L. Then the pull-back (T 2γ)∗ρ of ρ has the following chart expression,

(T 2
γ)∗ρ = (LL ◦T 3

γ)dt, (34)

where LL is the L-associated Lagrange function, given by

LL = ALẇL +A2
σ wσ

3 ẇL + ÄL
...wL. (35)

We note that the function LL ◦T 3γ coincides, after the pull-back by means of T 3γ , with the coefficient of class of 1-form
ρ (17) in the variational sequence .

Now, suppose that ρ defines the parameter-invariant functional ρK . Then LL reduces to

LL = ALẇL +A2
σ wσ

3 ẇL, (36)

with the coefficients AL, A2
σ , not depending on ẇL and ẅL. The variational integral (28) can be now written of the form

ρK(Ω) =
∫

K
(LL ◦T 3

γ)dt, (37)

and depends on a subset Ω = γ(K) in Y only. From the form of the variational integral (29), it follows that the equations
for extremals of ρK(Ω) are the Euler-Lagrange equations

εK(LL) = 0,

where εK(LL) are the Euler-Lagrange expressions, given by (25).
It is the standard result that the neccessary and sufficient conditions for the variational integral (28) to be parameter-

invariant, are the well-known Zermelo conditions (Zermelo [11] , McKiernan [7]). An auxiliary lemma simplifying the
Zermelo conditions, we proved in [10], is the following.

Lemma 9. A function F = F(yK , ẏK , ÿK), defined on ImmT 2Y satisfies the Zermelo conditions

∂F
∂ ẏK ẏK +2

∂F
∂ ÿK ÿK = F,

∂F
∂ ÿK ẏK = 0,

if and only if the function G(wL, ẇL, ẅL,wσ ,wσ
1 ,w

σ
2 ) = F(yK , ẏK , ÿK) satisfies

∂G
∂ ẇL ẇL = G,

∂G
∂ ẅL = 0.

Hence, we immediately see that the function LL (36) associates parameter-invariant variational functional.
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