Modeling of Natural Disasters via Cellular Neural Networks Approach
Abstract
In this paper we present several models of tsunami waves and tornado. We study shallow water waves. Two-component Camassa-Holm type system which admits peaked traveling waves is considered. Then we study two- dimensional Kuramoto-Tsuzuki equation as a model of tornado. Cellular Neural Network (CNN) approach is applied in order to study the structure of the traveling waves. Numerical simulations of the CNN models in both -tsunami and tornado models are presented.
Full Text:
PDFReferences
B.Alvarez-Samaniego, D.Lannes, Large time exitence for 3D water-waves and asymptotics, Invent.Math., 171, pp. 485-541, 2008.
E.M.Brooks,Thetornado-cyclone,Weatherwise2(2)(1949),pp.32-33.
R.Camassa, D. Holm, An integrable shallow water equation with peaked solutions, Phys. Rev. Letters, vol. 71, pp.
–1664, 1993
L.O.Chua, L.Yang, Cellular Neural Network: Theory and Applications, IEEE Trans. CAS, vol. 35, pp. 1257-1290, Oct. 1988.
L.O.Chua, M.Hasler, G.S.Moschytz, J.Neirynsk, Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation, IEEE Trans. CAS-I, vol. 42, N 10, pp. 559-577, Oct. 1995.
A.Constantin,R.S.Johnson,Propagationofverylongwaterwaves,withvorticity,overvariabledepth,withapplica- tions to tsunamis, Fluid Dyn.Res., 40, pp. 175-211, 2008.
A.Constantin,W.Strauss,StabilityoftheCamassa-Holmsolitons,J.NonlinearSci.,12,pp.415-422,2002.
P.G.Drazin,R.S.Johnson,Solitons:AnIntroduction,CambridgeUniversityPress,Cambridge,1989.
A.Forsyth,A.,Theoryofdifferentialequations,vol.6,DoverPublications,NY,1959
A.E.Green, P.M. Naghdi, A derivation of equations for wave propagation in water of variable deph, J.Fluid Mech., 78, pp.237-246, 1976.
R.S.Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge, 1997.
J.Mallet-Paret,Spatialpatterns,spatialchaosandtravellingwavesinlatticeofdifferentialequations,in:Stochastic and Spatial Structure of Dynamical Systems, editors van Strien, S. and Verduyn Lunel, S., North-Holland, pp. 105–129, 1996.
L.Perko,Differentialequationsanddynamicalsystems,Springer,NY,1991.
T.Roska,L.O.Chua,D.Wolf,T.Kozek,R.Tetzlaff,F.Puffer,Simulatingnonlinearwavesandpartialdifferentialequa-
tions via CNN- Part I: Basic techniques, IEEE Trans. CAS-I, vol. 42, N 10, pp. 807-815, Oct. 1995.
A.A.Samarskii,ComputersandNonlinearPhenomena:Computersandmodernscience.Auto.foreword,Moscow:
Science. (1988) 192 p.
F. Serre, Contribution a ́ l’e ́tude des e ́coulements permanents et variables dans les canaux, La Houille Blanche, 3, pp. 374-388, 1953.
A.Slavova,Cellular Neural Networks: Dynamics and Modelling, Kluwer Academic Publishers, 2003.
R. Tetzlaff, F. Gollas, Modeling complex systems by reaction-diffusion Cellular Nonlinear Networks with polyno-
mial Weight-Functions,Proc. IEEE CNNA2005,Taiwan, 2005.
G.B.Whitham,LinearandNonlinearWaves,J.WhileyandSons,NewYork,1980.
Refbacks
- There are currently no refbacks.