Mathematical Model of IL -1- NFkB Biological Module

Natasa Kablar, Vladimir Kvrgic´

Abstract


In this paper we develop mathematical model of IL-1-NFB signaling pathway. First, we describephysiology and draw functional diagram, then, based on physiology, we state set of biochemical reactions to describeunderlying biochemistry. At last we develop mathematical model. Parameter data are chosen from experimental literatureor are assumed (for IL -1). For plausable set of parameter data we run simulations.

Full Text:

PDF

References


E. Klipp, R. Herwing, A. Kowald, C. Wirling, and H. Lerhach, Systems Biology in Practice: Concepts, Implementation

and Application, Germany: Wiley-VHC, 2005.

P. Erdi and J. Toth, Mathematical Models of Chemical Reactions: Theory and Application of Deterministic and

Stochastic Models, Princeton, NJ: Princeton University Press, 1989.

J. Keener and J. Sneyd, Mathematical Physiology, New York, NY: Springer-Verlag, 1998.

H. K. Khalil, Nonlinear Systems, Upper Saddle River, NJ: Prentice Hall, 2002.

N. A. Kablar, Dynamical Modeling and Analysis of NFB Biological Module, Thematic Monography, Belgrade,

Serbia, in preparation, 2012.

T. C. Mang, S.Somani, and P. Dhar, ”Modeling and Simulation of Biological Systems with Stochasticity”, In SIlico

Biology, Vol. 4, Paper 0024, 2004.

S. L. Campbell, Singular Systems of Differential Equations, Pitman, Marshfield, Mass., 1980.

W. M. Haddad, V. Chellaboina, N. A. Kablar, ”Nonlinear Impulsive Dynamical Systems Part I: Stability and Dissipativity”,

International Journal of Control, vol. 74, pp. 1631-1658, 2001.

N. A. Kablar, Singularly Impulsive Dynamical Systems with Application in Biology, University of Belgrade, Faculty

of Mechanical Engineering, Serbia, 2007.

J. A. Jacquez, C. P. Simon, ”Qualitative Theory of Compartmental Systems”, SIAM Review, 35 (1993) 43.

T. Kaczorek, Positive 1D and 2D Systems, New York, NY: Springer, 2002.


Refbacks

  • There are currently no refbacks.