Practical Stability of Singularly Impulsive Dynamical Systems: Bellman-Gronwall Approach
Abstract
In this paper we present new model of singularly impulsive dynamical systems. Dynamics of this systemis characterized by the set of differential, difference, and algebraic equations. They represent the class of hybrid systems,where algebraic equations represent constraints that differential and difference equations need to satisfy. For the classof singularly impulsive dynamical systems we state and prove Bellman-Gronwall lemma. Furthermore, using Bellman-Gronwall lemma for the class of singularly impulsive dynamical systems we present stability results.
Full Text:
PDFReferences
Bainov D. D. and P. S. Simeonov, Systems with Impulse Effect: Stability, Theory and Applications, Chichester: Ellis
Horwood Limited, 1989.
Bainov D. D. and P. S. Simeonov, Impulsive Differential Equations: Asymptotic Properties of the Solutions, Singapore:
World Scientic, 1995.
Back A., J. Guckenheimer, and M. Myers, ”A dynamical simulation facility for hybrid systems,” In R. Grossman,
A. Nerode, A. Ravn and H. Rischel (Eds), Hybrid Systems, New York: Springer-Verlag, pp. 255–267, 1993.
Boyd S., L.E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. In:
SIAM studies in applied mathematics, 1994.
Branicky M. S., ”Multiple-Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE
Transactions on Automatic Control, Vol. 43, pp. 475–482, 1998.
Branicky M. S., V. S. Borkar, and S. K. Mitter, ”A unified framework for hybrid control: model and optimal control
theory,” IEEE Transactions on Automatic Control, Vol. 43, pp. 31–45, 1998.
Brockett R.W., ”Hybrid models for motion control systems,” In H. L. Trentelman and J. C.Willems, editors, Essays
in Control: Perspectives in the Theory and its Applications, pp. 29–53. Birkhauser, Boston, 1993.
Brogliato B., Non-smooth Impact Mechanics: Models, Dynamics and Control, London: Springer-Verlag, 1996.
Brogliato B., S. I. Niculescu, and P. Orhant, ”On the control of finite-dimensional mechanical systems with unilateral
constraints,” IEEE Transactions on Automatic Control, Vol. 42, pp. 200–215, 1997.
Debeljkovic D.Lj. et al., Continual Singular Systems, Faculty of Mechanical Systems, University of Belgrade,
Belgrade, Serbia, 2005.
Debeljkovic D.Lj. et al., Discrete Descriptive Singular Systems, Faculty of Mechanical Systems, University of
Belgrade, Belgrade, Serbia, 2005.
Gollu A. and P. P. Varaiya, ”Hybrid dynamical systems,” Proceedings of the IEEE Conference on Decision and
Control, pp. 2708–2712, 1989.
Haddad W.M., V.Chellaboina, N.A. Kablar, ”Nonlinear Impulsive Dynamical Systems: Stability and Dissipativity,”
Proc. IEEE Conf. Dec. Contr., pp. 5158-5163, Phoenix, AZ, 1999. Also in: Int. J. Contr., vol. 74, pp. 1631-1658,
a.
Haddad W.M., V.Chellaboina, N.A. Kablar, ”Nonlinear Impulsive Dynamical Systems: Feedback Interconnections
and Optimality,” Proc. IEEE Conf. Dec. Contr., Phoenix, AZ, 1999. Also in: Int. J. Contr., vol. 74, pp. 1659-1677,
b.
Haddad W.M., N.A. Kablar, V.Chellaboina, ”Robustness of Uncertain Nonlinear Impulsive Dynamical Systems,”
Proc. IEEE Conf. Dec. Contr., Sidney, pp. 2959-2964, Australia, 2000. Also in: Nonlinear Anal., submitted.
Haddad W.M., N.A. Kablar, V.Chellaboina, ”Optimal Disturbance Rejection of Nonlinear Impulsive Dynamical
Systems,” Nonlinear Anal., submitted, 2005.
Hagiwara T. and M. Araki, ”Design of a stable feedback controller based on the multirate sampling of the plant
output,” IEEE Transactions on Automatic Control, Vol. 33, pp. 812– 819, 1988.
Hu S., V. Lakshmikantham, and S. Leela, ”Impulsive differential systems and the pulse phenomena,” Journal of
Mathematics, Analysis and Applications, Vol. 137, pp. 605–612, 1989.
Kablar N.A., ”Singularly Impulsive or Generalized Impulsive Dynamical Systems,” Proc. Amer. Contr. Conf., Denver,
CO, 2003a.
Kablar N.A., ”Singularly Impulsive Dynamical Systems: Lyapunov and Asymptotic Stability,” Proc. Conf. Dec.
Contr., USA, 2003b.
Kablar N.A. and D. Lj. Debeljkovi, ”Finite Time Stability of Linear Singular Systems: Bellman Gronwall Approach,”
Proceedings ACC 1999, San Diego (USA), June 2-4, 1999, pp. 1803-1806.
Kablar N.A. and D. Lj. Debeljkovi, ”Finite Time Stability of time continuous singular systems: Bellman - Gronwall
Approach”, Tehnika - E, Yugoslavia, No. 1, 1999, E1-E4.
Kablar N.A. and D. Lj. Debeljkovi, ”On Finite Time Stability of Discrete Descriptors Systems: Bellman Gronwall
Approach,” Proc. HIPNEF 98, October 28-30, Belgrade, Yugoslavia, 1998, pp. 169-172.
Kablar N.A. and D. Lj. Debeljkovi, ”Stability of Discrete Linear Singular Systems: Bellman - Gronwall Approach”,
Transactions of Mechanical Engineering Faculty, Belgrade, No. 1, 1999, pp. 1-4.
Kulev G. K. and D. D. Bainov, ”Stability of sets for systems with impulses,” Bull. Inst. Math. Academia Sinica, Vol.
, pp. 313–326, 1989.
Lakshmikantham V., D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, Singapore:
World Scientic, 1989.
Lakshmikantham V. and X. Liu, ”On quasi stability for impulsive differential systems,” Non. Anal. Theory, Methods
and Applications, Vol. 13, pp. 819–828, 1989.
Lakshmikantham V., S. Leela, and S. Kaul, ”Comparison principle for impulsive differential equations with variable
times and stability theory,” Non. Anal. Theory, Methods and Applications, Vol. 22, pp. 499–503, 1994.
Leonessa A., W. M. Haddad, and V. Chellaboina, Hierarchical Nonlinear Switching Control Design with Applications
to Propulsion Systems, London: Springer- Verlag, 2000.
Liu X., ”Quasi stability via Lyapunov functions for impulsive differential systems,” Applicable Analysis, Vol. 31,
pp. 201–213, 1988.
Liu X., ”Stability results for impulsive differential systems with applications to population growth models,” Dynamic
Stability Systems, Vol. 9, pp. 163–174, 1994.
Lygeros J., D. N. Godbole, and S. Sastry, ”Verified hybrid controllers for automated vehicles,” IEEE Transactions
on Automatic Control, Vol. 43, pp. 522–539, 1998.
Passino K.M., A. N. Michel, and P. J. Antsaklis, ”Lyapunov stability of a class of discrete event systems,” IEEE
Transactions on Automatic Control, Vol. 39, pp. 269–279, 1994.
Samoilenko A. M. and N. A. Perestyuk, Impulsive Differential Equations, Singapore: World Scientic, 1995.
Simeonov P. S. and D.D. Bainov, ”The second method of Lyapunov for systems with an impulse effect,” Tamkang
Journal of Mathematics, Vol. 16, pp. 19–40, 1985.
Simeonov P. S., and D. D. Bainov, ”Stability with respect to part of the variables in systems with impulse effect,”
Journal of Mathematics, Analysis and Applications, Vol. 124, pp. 547–560, 1987.
Tomlin C., G. Pappas, and S. Sastry, ”Conflict resolution for air traffic management: a study in multiagent hybrid
systems,” IEEE Transactions on Automatic Control, Vol. 43, pp. 509–521, 1998.
Tavernini L., ”Differential automata and their discrete simulators,” Nonlinear Analysis, Theory, Methods, and Applications,
Vol. 11, No. 6, pp. 665–683, 1987.
Ye H., A. N. Michel, and L. Hou, ”Stability theory for hybrid dynamical systems,” IEEE Transactions on Automatic
Control, Vol. 43, pp. 461–474, 1998b.
Zabczyk J., ”Optimal control by means of switching,” Studia Mathematica, Vol. 65, pp. 161–171, 1973.
Refbacks
- There are currently no refbacks.