The complex KdV-Burgers equation

Netra Khanal

Abstract


This paper discusses spatially periodic solutions of the complex KdV-Burgers equation.We examine a special series solution of KdV-Burgers equation and prove the convergence and global regularity ofsuch solutions associated with initial data satisfying mild conditions. We also establish the existence and uniqueness ofthe Fourier series solution with the Fourier modes decaying algebraically in terms of the wave numbers.

Full Text:

PDF

References


bibitem{Bir} B. Birnir, {em An example of blow-up, for the complex KdV equation and existence beyond the blow-up}, SIAM J. Appl. Math, 47 (1987) 710-725.

bibitem{BW} J. L. Bona and F. B. Weissler, {em Blow up of spatially periodic complex-valued solutions of nonlinear dispersive equations}, Indiana Univ. Math. J., 50 (2001) 759-782.

bibitem{HR} G.H. Hardy and S. Ramanujan, {em Asymptotic Formulae in Combinatory Analysis}, Proc. London Math. Soc., 17 (1918) 75-115.

bibitem{Ke} M. Kerszberg, {em A simple model for unidirectional crystal growth}, Phys. Lett., 105A (1984) 241-244.

bibitem{NK} N. Khanal, J. Wu and J.-M. Yuan, {em Fifth-order complex Korteweg–de Vries-type equations}, J. Phys. A:

Math. Theor., 45 (2012) 17 pp

bibitem{Kh} N. Khanal, J. Wu, J.-M. Yuan and B.-Y. Zhang, {em Complex-valued Burgers and KdV-Burgers equations},

J. Nonlinear Sciences, 20 (2010) 341-360.

bibitem{KWY} N. Khanal, J. Wu and J.-M. Yuan, {em The Kawahara-type equation in weighted Sobolev spaces},

Nonlinearity, 21 (2008) 1489-1505.

bibitem{KSWY} N. Khanal, R. Sharma, J. Wu and J.-M. Yuan, {em Dual-Petrov-Galerkin method for extended fifth-order KdV type equations}, Dis. and Cont. Dyn. Sys, Supplement (2009), 442-450.

bibitem{Le}D. Levi, {em Levi-Civita theory for irrotational water waves in a one-dimensional channel and the

complex Korteweg-de Vries equation}, Teoret. Mat., 99 (1994), 435-440; Translation in Theoret. and Math. Phys,

(1994), 705-709.

bibitem{LeSa}D. Levi and M. Sanielevici, {em Irrotational water waves and the complex Korteweg-de Vries equation}, Phys. D, 98 (1996) 510-514.

bibitem{LS} D. Li and Y. Sinai, {em Blow ups of complex solutions of the 3D Navier-Stokes equations}, J. Eur. Math. Soc., 10 (2008) 267-313.

bibitem{Li} Y. Charles Li, {em Simple explicit formulae for finite time blow up solutions to the complex KdV

equation}, Chaos, Solitons & Fractals, 39 (2009) 369-372.

bibitem{PS} P. Pol'{a}v{c}ik and V. v{S}ver'{a}k, {em Zeros of complex caloric functions and singularities of

complex viscous Burgers equation}, J. Reine Angew. Math., 616 (2008) 205-217.

bibitem{Si}Y. Sinai, {em Power series for solutions of the $3D$-Navier-Stokes system on $Rsp 3$}, J. Stat. Phys.,

(2005) 779-803.

bibitem{WY1} J. Wu and J.-M. Yuan, {em The effect of dissipation on solutions of the complex KdV equation}, Math.

Comput. Simulation, 69 (2005) 589-599.

bibitem{WY2} J. Wu and J.-M. Yuan, {em Local well-posedness and local (in space) regularity results for the complex Korteweg-de Vries equation}, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007) 203-223.

bibitem{YW1} J.-M. Yuan and J. Wu, {em The complex KdV equation with or without dissipation}, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005) 489-512.


Refbacks

  • There are currently no refbacks.