Solutions of the first order linear equation with reflection and general linear conditions

Alberto Cabada

Abstract


This work is devoted to the study of first order linear problems with involution and general linear conditions. We first study the problem in the case of antiperiodic boundary conditions, giving an explicit Green's function for it. Then we move forward to more general linear boundary conditions, focusing on sufficient conditions for existence and uniqueness of solution. At the end of the paper we give estimates that ensure the positivity of the solution in the general problems and illustrate these applications with examples.

Full Text:

PDF

References


bibitem{And} Andrade, D.; Ma, T. F. textit{Numerical solutions for a nonlocal equation with reflection of the argument.} Neural Parallel Sci. Comput. 10, (2002),227-233.

bibitem{Cab4} Cabada, A.; Tojo, F. A. F. textit{Comparison results for first order linear operators with reflection and periodic boundary value conditions}. Nonlinear Analysis: Theory, Methods and Applications. Vol. 78, (2013), 32--46.

bibitem{Cab5} Cabada, A.; Infante, G.; Tojo, F. A. F. textit{Nontrivial Solutions of Perturbed Hammerstein Integral Equations with Reflections. Boundary Value Problems}. (to appear).

bibitem{Aft} Aftabizadeh, A. R.; Huang, Yong Kang; Wiener; Joseph. textit{Bounded Solutions for Differential Equations with Reflection of the Argument}. J. Math. Anal. Appl. 135 (1988), 31-37.

bibitem{Gup}

Gupta, Chaitan P. textit{Existence and uniqueness theorems for boundary value problems involving reflection of the argument.} Nonlinear Anal. 11 (1987), 9, 1075-1083.

bibitem{Gup2}

Gupta, Chaitan P. textit{Two-point boundary value problems involving reflection of the argument.} Internat. J. Math. Math. Sci. 10 (1987), 2, 361-371.

bibitem{Ma} Ma, T. F.; Miranda, E. S.; de Souza Cortes, M. B. textit{A nonlinear differential equation involving reflection of the argument.} Arch. Math. (Brno) 40 (2004), 1, 63-68.

bibitem{Kul} Kuller, Robert G. textit{On the differential equation $f'=f circ g$, where $g circ g=I$}. Math. Mag. 42 1969 195-200.

bibitem{Ore} O'Regan, Donal. textit{Existence results for differential equations with reflection of the argument.}

J. Austral. Math. Soc. Ser. A 57 (1994), 2, 237-260.

bibitem{Ore2} O'Regan, Donal; Zima, Miroslawa. textit{Leggett-Williams norm-type fixed point theorems for multivalued mappings.} Appl. Math. Comput. 187 (2007), 2, 1238-1249.

bibitem{Pia} Piao, Daxiong textit{Pseudo almost periodic solutions for differential equations involving reflection of the argument.} J. Korean Math. Soc. 41 (2004), 4, 747-754.

bibitem{Pia2} Piao, Daxiong textit{Periodic and almost periodic solutions for differential equations with reflection of the argument.} Nonlinear Anal. 57 (2004), 4, 633-637.

bibitem{Sha} Shah, S. M.; Wiener, Joseph. textit{Reducible functional-differential equations.} Internat. J. Math. Math. Sci. 8 (1985), 1-27.

bibitem{Sil} Silberstein, Ludwik. textit{Solution of the Equation $f'(x)=f(1/x)$}. Philos. Mag. 7:30 (1940), pp 185-186.

bibitem{Wat1} Watkins, Will. textit{Modified Wiener Equations}. Int. J. Math. Math. Sci. 27:6 (2001), pp 347-356.

bibitem{Wat2} Watkins, Will. textit{Asymptotic Properties of Differential Equations with Involutions}. Int. J. Pure Appl. Math. 44:4 (2008), pp 485-492.

%bibitem{Wie3} Wiener, Joseph. textit{Differential equations with involutions.} Differensial'nye Uravneniya, 5, (1969), 1131-1137.

bibitem{Wie1} Wiener, Joseph; Aftabizadeh, A. R. textit{Boundary value problems for differential equations with reflection of the argument.} Internat. J. Math. Math. Sci. 8 (1985), 1, 151-163.

bibitem{Wie} Wiener Joseph; Watkins, Will. textit{A Glimpse into the Wonderland of Involutions}. Missouri J. Math. Sci. 14 (2002), 3, 175-185.

bibitem{Wie2} Wiener, Joseph. textit{Generalized solutions of functional-differential equations.} World Scientific Publishing Co., Inc., River Edge, NJ, 1993.


Refbacks

  • There are currently no refbacks.