Solutions of the first order linear equation with reflection and general linear conditions
Abstract
Full Text:
PDFReferences
bibitem{And} Andrade, D.; Ma, T. F. textit{Numerical solutions for a nonlocal equation with reflection of the argument.} Neural Parallel Sci. Comput. 10, (2002),227-233.
bibitem{Cab4} Cabada, A.; Tojo, F. A. F. textit{Comparison results for first order linear operators with reflection and periodic boundary value conditions}. Nonlinear Analysis: Theory, Methods and Applications. Vol. 78, (2013), 32--46.
bibitem{Cab5} Cabada, A.; Infante, G.; Tojo, F. A. F. textit{Nontrivial Solutions of Perturbed Hammerstein Integral Equations with Reflections. Boundary Value Problems}. (to appear).
bibitem{Aft} Aftabizadeh, A. R.; Huang, Yong Kang; Wiener; Joseph. textit{Bounded Solutions for Differential Equations with Reflection of the Argument}. J. Math. Anal. Appl. 135 (1988), 31-37.
bibitem{Gup}
Gupta, Chaitan P. textit{Existence and uniqueness theorems for boundary value problems involving reflection of the argument.} Nonlinear Anal. 11 (1987), 9, 1075-1083.
bibitem{Gup2}
Gupta, Chaitan P. textit{Two-point boundary value problems involving reflection of the argument.} Internat. J. Math. Math. Sci. 10 (1987), 2, 361-371.
bibitem{Ma} Ma, T. F.; Miranda, E. S.; de Souza Cortes, M. B. textit{A nonlinear differential equation involving reflection of the argument.} Arch. Math. (Brno) 40 (2004), 1, 63-68.
bibitem{Kul} Kuller, Robert G. textit{On the differential equation $f'=f circ g$, where $g circ g=I$}. Math. Mag. 42 1969 195-200.
bibitem{Ore} O'Regan, Donal. textit{Existence results for differential equations with reflection of the argument.}
J. Austral. Math. Soc. Ser. A 57 (1994), 2, 237-260.
bibitem{Ore2} O'Regan, Donal; Zima, Miroslawa. textit{Leggett-Williams norm-type fixed point theorems for multivalued mappings.} Appl. Math. Comput. 187 (2007), 2, 1238-1249.
bibitem{Pia} Piao, Daxiong textit{Pseudo almost periodic solutions for differential equations involving reflection of the argument.} J. Korean Math. Soc. 41 (2004), 4, 747-754.
bibitem{Pia2} Piao, Daxiong textit{Periodic and almost periodic solutions for differential equations with reflection of the argument.} Nonlinear Anal. 57 (2004), 4, 633-637.
bibitem{Sha} Shah, S. M.; Wiener, Joseph. textit{Reducible functional-differential equations.} Internat. J. Math. Math. Sci. 8 (1985), 1-27.
bibitem{Sil} Silberstein, Ludwik. textit{Solution of the Equation $f'(x)=f(1/x)$}. Philos. Mag. 7:30 (1940), pp 185-186.
bibitem{Wat1} Watkins, Will. textit{Modified Wiener Equations}. Int. J. Math. Math. Sci. 27:6 (2001), pp 347-356.
bibitem{Wat2} Watkins, Will. textit{Asymptotic Properties of Differential Equations with Involutions}. Int. J. Pure Appl. Math. 44:4 (2008), pp 485-492.
%bibitem{Wie3} Wiener, Joseph. textit{Differential equations with involutions.} Differensial'nye Uravneniya, 5, (1969), 1131-1137.
bibitem{Wie1} Wiener, Joseph; Aftabizadeh, A. R. textit{Boundary value problems for differential equations with reflection of the argument.} Internat. J. Math. Math. Sci. 8 (1985), 1, 151-163.
bibitem{Wie} Wiener Joseph; Watkins, Will. textit{A Glimpse into the Wonderland of Involutions}. Missouri J. Math. Sci. 14 (2002), 3, 175-185.
bibitem{Wie2} Wiener, Joseph. textit{Generalized solutions of functional-differential equations.} World Scientific Publishing Co., Inc., River Edge, NJ, 1993.
Refbacks
- There are currently no refbacks.